高等数学期末总复习 DAY 3.利用导数定义求极限 判断连续与可导的关系 关于导数定义的证明题 基本求导 基本高阶求导 抽象函数求导

您所在的位置:网站首页 高阶导数难题解析 高等数学期末总复习 DAY 3.利用导数定义求极限 判断连续与可导的关系 关于导数定义的证明题 基本求导 基本高阶求导 抽象函数求导

高等数学期末总复习 DAY 3.利用导数定义求极限 判断连续与可导的关系 关于导数定义的证明题 基本求导 基本高阶求导 抽象函数求导

2024-07-09 12:32| 来源: 网络整理| 查看: 265

DAY 3.

一路陪我走过来的从来都不是什么善良正直正能量,而是虚荣嫉妒不甘心

文章目录 DAY 3.1. 利用导数定义求极限2.判断连续与可导的关系3.关于导数定义的证明题4.基本复合函数求导5. 基本高阶求导6. 抽象函数求导

1. 利用导数定义求极限

导数的两种定义

f ′ ( x 0 ) f'{(x_0)} f′(x0​) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} limx→x0​​x−x0​f(x)−f(x0​)​ f ′ ( x 0 ) f'{(x_0)} f′(x0​) = lim ⁡ Δ x → 0 \lim_{ \Delta x \to 0} limΔx→0​ f ( x 0 + Δ x ) − f ( x 0 ) Δ x \frac{f(x_0 + \Delta x) - f(x_0)}{ \Delta x} Δxf(x0​+Δx)−f(x0​)​

解题基本用到的是凑上面两种形式的思想。

例题1 求 A = lim ⁡ Δ x → 0 \lim_{ \Delta x \to 0} limΔx→0​ f ( x − Δ x ) − f ( x ) Δ x \frac{f(x - \Delta x) - f(x)}{ \Delta x} Δxf(x−Δx)−f(x)​ 的极限

这里和上面第二类导数的定义就相差一个正负号 f ( x + Δ x ) f(x + \Delta x) f(x+Δx)所以很显然我们要凑第二类导数的定义

解: A = lim ⁡ Δ x → 0 \lim_{ \Delta x \to 0} limΔx→0​ f ( x 0 − Δ x ) − f ( x 0 ) Δ x \frac{f(x_0 - \Delta x) - f(x_0)}{ \Delta x} Δxf(x0​−Δx)−f(x0​)​

= lim ⁡ Δ x → 0 \lim_{ \Delta x \to 0} limΔx→0​ f ( x 0 + ( − Δ x ) ) − f ( x 0 ) − Δ x \frac{f(x_0 +(- \Delta x)) - f(x_0)}{ -\Delta x} −Δxf(x0​+(−Δx))−f(x0​)​ *(-1)

= f ′ ( x 0 ) f'(x_0) f′(x0​) * (-1)

= - f ′ ( x 0 ) f'(x_0) f′(x0​)

例题2 如果 f ( 0 ) = 0 f(0) = 0 f(0)=0 ,且 f ′ ( 0 ) f'(0) f′(0)存在,求A = lim ⁡ x → 0 f ( x ) x \lim_{x \to 0} \frac{f(x)}{x} limx→0​xf(x)​

解:由题意得

A = lim ⁡ x → 0 f ( x ) − 0 x − 0 \lim_{x \to 0} \frac{f(x) - 0}{x - 0} limx→0​x−0f(x)−0​

= lim ⁡ x → 0 f ( x ) − f ( 0 ) x − 0 \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} limx→0​x−0f(x)−f(0)​

= f ′ ( 0 ) f'(0) f′(0)

例题3 求A = lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 − h ) h \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{h} limh→0​hf(x0​+h)−f(x0​−h)​

解:原式

= lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) + f ( x 0 ) − f ( x 0 − h ) h \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) +f(x_0)- f(x_0 - h)}{h} limh→0​hf(x0​+h)−f(x0​)+f(x0​)−f(x0​−h)​

= lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) }{h} limh→0​hf(x0​+h)−f(x0​)​ - lim ⁡ h → 0 f ( x 0 − h ) − f ( x 0 ) h \lim_{h \to 0} \frac{f(x_0 - h) - f(x_0) }{h} limh→0​hf(x0​−h)−f(x0​)​

= f ′ ( x 0 ) f'(x_0) f′(x0​) - lim ⁡ h → 0 f ( x 0 − h ) − f ( x 0 ) h \lim_{h \to 0} \frac{f(x_0 - h) - f(x_0) }{h} limh→0​hf(x0​−h)−f(x0​)​

= f ′ ( x 0 ) f'(x_0) f′(x0​) - (- f ′ ( x 0 ) f'(x_0) f′(x0​))

=2 f ′ ( x 0 ) f'(x_0) f′(x0​)

2.判断连续与可导的关系

可导一定连续,连续不一定可导

一般有两种题型:

f ( x ) = { . . . ( x ! = x 0 ) . . . ( x = x 0 ) f(x)=\left\{ \begin{aligned} ... & & (x != x_0) \\ ... & & (x = x_0) \\ \end{aligned} \right. f(x)={......​​(x!=x0​)(x=x0​)​

例题4

讨论 f ( x ) = { 0 x=0 x 2 s i n 1 x x!=0 f(x)=\begin{cases} 0& \text{x=0}\\x^2sin\frac{1}{x}& \text{x!=0} \end{cases} f(x)={0x2sinx1​​x=0x!=0​ 的连续性与可导性

解:依题意得该函数的断点为 x = 0

则: lim ⁡ x → 0 x 2 sin ⁡ 1 x \lim_{x \to 0} x^2 \sin \frac{1}{x} limx→0​x2sinx1​ = 0 (DAY 1.中的一个重要结论 无穷小量*有界函数 = 0) 由此可知该函数连续。 而: f ′ ( 0 ) f'(0) f′(0) = lim ⁡ x → 0 f ( x ) − f ( 0 ) x − 0 \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} limx→0​x−0f(x)−f(0)​ = lim ⁡ x → 0 x 2 sin ⁡ 1 x − 0 x − 0 \lim_{x \to 0} \frac{x^2\sin \frac{1}{x} - 0}{x - 0} limx→0​x−0x2sinx1​−0​ = 0 所以该函数也可导

f ( x ) = { . . . ( x ≤ x 0 ) . . . ( x > x 0 ) f(x)=\left\{ \begin{aligned} ... & & (x \le x_0) \\ ... & & (x > x_0) \\ \end{aligned} \right. f(x)={......​​(x≤x0​)(x>x0​)​

例题5

f ( x ) = { x 2 x 1 f(x)=\begin{cases} x^2& \text{x 1} \end{cases} f(x)={x2ax+b​x 1​ 在 x = 1处可导,求a,b

解:首先函数可导则一定连续

可得, lim ⁡ x → 1 a x 2 + b = f ( 1 ) = 1 \lim_{x \to 1} ax^2 + b = f(1) = 1 limx→1​ax2+b=f(1)=1 可推 ⇒ \Rightarrow ⇒ a + b = 1 然后,函数可导,则左右导数相等; 利用定义求导可得, f ′ ( 1 − ) = lim ⁡ x → 1 − f ( x ) − f ( 1 ) x − 1 f'(1^-) = \lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1} f′(1−)=limx→1−​x−1f(x)−f(1)​ = lim ⁡ x → 1 − x 2 − 1 x − 1 \lim_{x \to 1^-} \frac{x^2 - 1}{x - 1} limx→1−​x−1x2−1​ = 2

f ′ ( 1 + ) = lim ⁡ x → 1 + f ( x ) − f ( 1 ) x − 1 f'(1^+) = \lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} f′(1+)=limx→1+​x−1f(x)−f(1)​

= lim ⁡ x → 1 + a x + b − 1 x − 1 \lim_{x \to 1^+} \frac{ax +b - 1}{x - 1} limx→1+​x−1ax+b−1​

= lim ⁡ x → 1 + ( 1 − b ) x + b − 1 x − 1 \lim_{x \to 1^+} \frac{(1-b)x +b - 1}{x - 1} limx→1+​x−1(1−b)x+b−1​

= lim ⁡ x → 1 + ( 1 − b ) ( x − 1 ) x − 1 \lim_{x \to 1^+} \frac{(1-b)(x - 1)}{x - 1} limx→1+​x−1(1−b)(x−1)​

= 1-b 所以: 1 - b = 2 ⇒ \Rightarrow ⇒ b = -1 由于:a + b = 1 ⇒ \Rightarrow ⇒ a = 2

3.关于导数定义的证明题

例题6 设 f (x) 满足条件:

f ( x + y ) = f ( x ) f ( y ) ; x , y ∈ R f(x + y) = f(x)f(y) ; x,y \in R f(x+y)=f(x)f(y);x,y∈R f ( x ) = 1 + x g ( x ) , lim ⁡ x → 0 g ( x ) = 1 f(x) = 1+xg(x), \lim_{x \to 0} g(x) = 1 f(x)=1+xg(x),limx→0​g(x)=1 证明f(x)在 R 上处处可导,且 f ′ ( x ) = f ( x ) f'(x) = f(x) f′(x)=f(x)

解: f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} f′(x)=limΔx→0​Δxf(x+Δx)−f(x)​

= lim ⁡ Δ x → 0 f ( x ) f ( Δ x ) − f ( x ) Δ x \lim_{\Delta x \to 0} \frac{f(x)f( \Delta x) - f(x)}{\Delta x} limΔx→0​Δxf(x)f(Δx)−f(x)​

= lim ⁡ Δ x → 0 f ( x ) ( f ( Δ x ) − 1 ) Δ x \lim_{\Delta x \to 0} \frac{f(x)(f( \Delta x) - 1)}{\Delta x} limΔx→0​Δxf(x)(f(Δx)−1)​

= f ( x ) lim ⁡ Δ x → 0 f ( Δ x ) − 1 Δ x f(x)\lim_{\Delta x \to 0} \frac{f( \Delta x) - 1}{\Delta x} f(x)limΔx→0​Δxf(Δx)−1​

= f ( x ) lim ⁡ Δ x → 0 1 + Δ x g ( Δ x ) − 1 Δ x f(x)\lim_{\Delta x \to 0} \frac{1 + \Delta x g(\Delta x)- 1}{\Delta x} f(x)limΔx→0​Δx1+Δxg(Δx)−1​

= f ( x ) lim ⁡ Δ x → 0 g ( Δ x ) f(x)\lim_{\Delta x \to 0} g(\Delta x) f(x)limΔx→0​g(Δx)

= f ( x ) f(x) f(x)

证毕

4.基本复合函数求导

在这里插入图片描述注意牢记基本公式

5. 基本高阶求导

和例题7安排在一起

注意求导的先后次序,以及中间是否可以化简等,不骜述。

6. 抽象函数求导

例题7 包含第五点基本高阶求导

求 y = f ( x 2 ) y = f(x^2) y=f(x2) 的 d y d x , d 2 y d x 2 \frac{d_y}{d_x}, \frac{d^2{_y}}{d_x^2} dx​dy​​,dx2​d2y​​

解:

d y d x \frac{d_y}{d_x} dx​dy​​ = f ′ ( x 2 ) ∗ 2 x f'(x^2) * 2x f′(x2)∗2x (先函数求导再中间量求导)

d 2 y d x 2 \frac{d^2{_y}}{d_x^2} dx2​d2y​​ = ( f ′ ( x 2 ) ∗ 2 x ) ′ (f'(x^2) * 2x)' (f′(x2)∗2x)′ (乘积的求导) = f ′ ′ ( x 2 ) ∗ 2 x ∗ 2 x + f ′ ( x 2 ) ∗ 2 f''(x^2) *2x *2x + f'(x^2) *2 f′′(x2)∗2x∗2x+f′(x2)∗2 = 4 x 2 f ′ ′ ( x 2 ) + 2 f ′ ( x 2 ) 4x^2 f''(x^2) + 2f'(x^2) 4x2f′′(x2)+2f′(x2)



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3