STM32模拟SPI时序控制双路16位数模转换(16bit DAC)芯片DAC8552电压输出

您所在的位置:网站首页 软件模拟spi和硬件spi的区别 STM32模拟SPI时序控制双路16位数模转换(16bit DAC)芯片DAC8552电压输出

STM32模拟SPI时序控制双路16位数模转换(16bit DAC)芯片DAC8552电压输出

2023-03-14 16:46| 来源: 网络整理| 查看: 265

STM32模拟SPI时序控制双路16位数模转换(16bit DAC)芯片DAC8552电压输出

STM32部分芯片具有12位DAC输出能力,要实现16位及以上DAC输出需要外挂DAC转换ASIC。

DAC8552是双路16位DAC输出芯片,通过SPI三线总线进行配置控制输出。这里介绍通过GPIO管脚模拟时序进行控制的方式。

电路连接

DAC8552支持2.7V~5.5V的供电,根据需要提供电源电压,对于STM32可能面对不同供电电压的DAC8552, 因此STM32与DAC8552连接的三线,可以用10K电阻上拉到DAC8552的供电电压,而STM32选择支持FT(5V耐压)的三个管脚,并采用Open-drain无上下拉输出模式,从而可以兼容在各种供电条件下的DAC8552访问控制。对于STM32F103可以采用PB6, PB7和PB8进行连接,对于5V供电的DAC8552的连接如下图所示:

在这里插入图片描述

DAC8552控制协议

STM32通过发送24个位的SPI数据控制DAC8552的工作状态。其中前16个位为单路(通道A或通道B)的DAC配置值,后8个位为控制指令。 在这里插入图片描述 协议控制操作主要由两部分操作构成:

发送24位数据到某个通道的buffer执行buffer里24位数据里的控制指令,即"load"某个通道,指令可能是通道关电,也可能是DAC电压根据配置数据值输出

在关电模式可以配置通道管脚处于1K下拉,100K下拉或高阻状态。操作方式比较多,如下图所示: 在这里插入图片描述 在这里插入图片描述 可以进行简化,对于通道配置只采用这几种指令: 在这里插入图片描述 对于通告关电只采用这几种: 在这里插入图片描述

STM32CUBEIDE工程配置

这里采用STM32CUBEIDE,对STM32F103C6T6芯片进行HAL库工程配置。 首先配置时钟系统: 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 然后配置三线的管脚: 在这里插入图片描述 保存并生成基本: 在这里插入图片描述

STM32工程代码

SPI三线只向DAC8552单向发送数据进行控制。在SYNC即片选低电平期间,每个SCLK时钟下降沿DAC8552采样输入数据。

这里采用的微秒级延时函数,参考 STM32 HAL us delay(微秒延时)的指令延时实现方式及优化 。

首先定义管脚输出态:

#define DAC8552_SYNC_LOW HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_RESET); #define DAC8552_SYNC_HIGH HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET); #define DAC8552_DIN_LOW HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_RESET); #define DAC8552_DIN_HIGH HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_SET); #define DAC8552_SCLK_LOW HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_RESET); #define DAC8552_SCLK_HIGH HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET);

然后编写通道输出配置函数, 这里提供单通道和双通道配置的函数,以及单通道和双通道关电的函数:

void DAC8552_Set_Channel_A(uint16_t Data) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x10; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_Channel_B(uint16_t Data) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x24; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_Channel_AB(uint16_t Data) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x10; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; CMD = 0x24; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_1K_A(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x11; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_1K_B(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x25; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_1K_AB(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x11; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; CMD = 0x25; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_100K_A(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x12; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_100K_B(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x26; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_100K_AB(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x12; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; CMD = 0x26; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_Hz_A(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x13; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_Hz_B(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x27; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_Hz_AB(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x13; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; CMD = 0x27; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts }

就可以进行函数调用实现控制DAC8552双路的电压输出值。如控制A路为DAC8552参考电压的1/2, B路输出为DAC8552参考电压的3/4:

DAC8552_Set_Channel_A(32768); DAC8552_Set_Channel_B(49152);

完整的main.c代码如下:

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ __IO float usDelayBase; void PY_usDelayTest(void) { __IO uint32_t firstms, secondms; __IO uint32_t counter = 0; firstms = HAL_GetTick()+1; secondms = firstms+1; while(uwTick!=firstms) ; while(uwTick!=secondms) counter++; usDelayBase = ((float)counter)/1000; } void PY_Delay_us_t(uint32_t Delay) { __IO uint32_t delayReg; __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase); delayReg = 0; while(delayReg!=usNum) delayReg++; } void PY_usDelayOptimize(void) { __IO uint32_t firstms, secondms; __IO float coe = 1.0; firstms = HAL_GetTick(); PY_Delay_us_t(1000000) ; secondms = HAL_GetTick(); coe = ((float)1000)/(secondms-firstms); usDelayBase = coe*usDelayBase; } void PY_Delay_us(uint32_t Delay) { __IO uint32_t delayReg; __IO uint32_t msNum = Delay/1000; __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase); if(msNum>0) HAL_Delay(msNum); delayReg = 0; while(delayReg!=usNum) delayReg++; } /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define DAC8552_SYNC_LOW HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_RESET); #define DAC8552_SYNC_HIGH HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET); #define DAC8552_DIN_LOW HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_RESET); #define DAC8552_DIN_HIGH HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_SET); #define DAC8552_SCLK_LOW HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_RESET); #define DAC8552_SCLK_HIGH HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET); void DAC8552_Set_Channel_A(uint16_t Data) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x10; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_Channel_B(uint16_t Data) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x24; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_Channel_AB(uint16_t Data) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x10; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; CMD = 0x24; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_1K_A(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x11; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_1K_B(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x25; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_1K_AB(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x11; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; CMD = 0x25; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_100K_A(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x12; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_100K_B(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x26; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_100K_AB(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x12; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; CMD = 0x26; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_Hz_A(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x13; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_Hz_B(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x27; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } void DAC8552_Set_PowerDown_Hz_AB(void) { uint8_t CMD = 0; uint32_t WriteData = 0; __disable_irq() ; //disable all interrupts CMD = 0x13; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; CMD = 0x27; WriteData = (CMD DAC8552_DIN_HIGH; } else { DAC8552_DIN_LOW; } DAC8552_SCLK_HIGH; PY_Delay_us_t(1); DAC8552_SCLK_LOW; PY_Delay_us_t(1); } DAC8552_SYNC_HIGH; __enable_irq() ; //enable all interrupts } /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); /* USER CODE BEGIN 2 */ PY_usDelayTest(); PY_usDelayOptimize(); DAC8552_Set_Channel_A(32768); DAC8552_Set_Channel_B(49152); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { PY_Delay_us_t(1000000); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8, GPIO_PIN_SET); /*Configure GPIO pins : PB6 PB7 PB8 */ GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ STM32例程下载

STM32F103C6T6模拟SPI时序控制DAC8552电压输出例程

–End–



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3