26例遗传性球形红细胞增多症的临床及基因诊断

您所在的位置:网站首页 红细胞增多症严重吗 26例遗传性球形红细胞增多症的临床及基因诊断

26例遗传性球形红细胞增多症的临床及基因诊断

2024-07-06 06:42| 来源: 网络整理| 查看: 265

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2023 Apr 28; 48(4): 565–574. Chinese. doi: 10.11817/j.issn.1672-7347.2023.220390PMCID: PMC10930258PMID: 37385619

Language: Chinese | English

26例遗传性球形红细胞增多症的临床及基因诊断Clinical and genetic diagnosis for 26 paitents with hereditary spherocytosis白 丽红,1 郑 丽萍,1 李 彬媛,1 黄 惠,2 施 小六,2 and 易 彦1白 丽红

1 中南大学湘雅二医院血液内科, 长沙 410011

Find articles by 白 丽红郑 丽萍

1 中南大学湘雅二医院血液内科, 长沙 410011

Find articles by 郑 丽萍李 彬媛

1 中南大学湘雅二医院血液内科, 长沙 410011

Find articles by 李 彬媛黄 惠

2 中南大学湘雅二医院医学遗传科, 长沙 410011

Find articles by 黄 惠施 小六

2 中南大学湘雅二医院医学遗传科, 长沙 410011

Find articles by 施 小六易 彦

1 中南大学湘雅二医院血液内科, 长沙 410011

Find articles by 易 彦Monitoring Editor: 郭 征Author information Article notes Copyright and License information PMC Disclaimer 1 中南大学湘雅二医院血液内科, 长沙 410011 2 中南大学湘雅二医院医学遗传科, 长沙 410011Corresponding author. 白丽红,Email: nc.ude.usc@gnohiliab, ORCID: 0000-0001-6654-0374 施小六,Email: nc.ude.usc@6lxihs, ORCID: 0000-0002-9759-2254 易彦,Email: nc.ude.usc@uscnayiy, ORCID: 0000-0002-1632-7329Received 2022 Jul 20Copyright ©Journal of Central South University (Medical Science). All rights reserved.Abstract目的

遗传性球形红细胞增多症(hereditary spherocytosis,HS)是最常见的遗传性红细胞膜缺陷病,主要表现为贫血、黄疸、脾大。由于部分患者临床表现不典型、家族史阴性,加上传统的实验室检查敏感性和特异性均较低,常导致漏诊、误诊。目前已明确ANK1、SPTB、SPTA1、SLC4A1和EPB42基因突变可引起其对应的编码蛋白质缺失,进而导致红细胞膜缺陷。本研究旨在分析HS基因诊断的可行性和临床应用价值。

方法

回顾性收集2018年1月至2021年9月中南大学湘雅二医院血液内科收治的26例中国湖南HS患者的资料,分析其临床表现和实验室检测结果。应用二代测序(next-generation sequencing,NGS)结合Sanger测序,检测HS致病基因突变和胆红素代谢调控关键酶尿苷二磷酸葡萄糖醛酸转移酶1家族多肽A1(uridine diphosphate-glucuronosyl transferase 1 family polypeptide A1,UGT1A1)变异。根据美国医学遗传学与基因组学学会(American College of Medical Genetics and Genomics,ACMG)发布的《序列变异解释的标准和指南》进行致病基因变异判读。分析不同基因变异类型患者的临床特征,并对其临床诊断和基因诊断进行对比分析。

结果

在26例HS患者中,贫血23例、黄疸25例、脾大24例、胆石症14例;16例有家族史,10例无家族史;25例HS致病基因突变检测结果为阳性,1例阴性。19个家系共检出18个HS致病基因杂合变异,其中14个为致病性变异,1个可能致病性变异,3个意义未明变异。SPTB突变(12个)和ANK1突变(4个)最多。变异类型以无义突变为主(9个)。SPTB突变组与ANK1突变组相比,外周血红细胞参数及溶血指标的差异均无统计学意义(均P>0.05)。ANK1突变组切脾率高于SPTB突变组,差异有统计学意义(χ2=6.970,P=0.014)。不同突变类型(无义突变、移码突变、剪接位点突变及错义突变)组间外周血红细胞参数及溶血指标差异亦均无统计学意义(均P>0.05)。临床确诊的18例患者中,17例与基因诊断一致;临床疑诊患者8例,均经HS致病基因突变检测确诊。24例HS患者行UGT1A1变异检测,5例患者携带UGT1A1变异导致酶活性降低,19例酶活性正常。酶活性降低组较酶活性正常组的总胆红素(total bilirubin,TBIL)水平高,差异具有统计学意义(U=22,P=0.038)。

结论

大多数HS患者有贫血、黄疸和脾大,常合并胆石症。中国湖南HS致病基因突变以SPTB和ANK1突变最常见,基因型与临床表型无明显相关性。基因诊断与临床诊断高度一致。UGT1A1酶活性降低可导致HS患者黄疸程度加重。临床联合基因诊断有利于HS的快速、精准诊断;而UGT1A1酶活性相关基因变异检测对HS黄疸评估有重要意义。

Keywords: 遗传性球形红细胞增多症, 临床表型, 二代测序, 基因型, 基因诊断, 尿苷二磷酸葡萄糖醛酸转移酶1家族多肽A1AbstractObjective

Hereditary spherocytosis (HS) is the most common hereditary defect of the red cell membrane, mainly characterized by anemia, jaundice, and splenomegaly. Due to the atypical clinical manifestations and negative family history of some patients, as well as the low sensitivity and specificity of traditional laboratory examinations, it is easy for it to escape diagnosis or be misdiagnosed. At present, it has been confirmed that the mutation of ANK1, SPTB, SPTA1, SLC4A1 and EPB42 genes can cause the deletion of their corresponding coding proteins, and thus lead to the defect of erythrocyte membrane. This study aims to analyze the feasibility and clinical application value of HS gene diagnosis.

Methods

Data of 26 patients from Hunan, China with HS admitted to the Department of Hematology, Second Xiangya Hospital of Central South University from January 2018 to September 2021 were retrospectively collected, and their clinical manifestations and results of laboratory examinations were analyzed. Next-generation sequencing (NGS) combined with Sanger sequencing were applied. The mutation of HS pathogenic gene and the variation of uridine diphosphate-glucuronosyl transferase 1 family polypeptide A1 (UGT1A1), a key enzyme in the regulation of bilirubin metabolism, were detected. The results of pathogenic gene variations were interpreted pathogenic gene variations in accordance with the Standards and guidelines for the interpretation of sequence variants published by the American College of Medical Genetics and Genomics (ACMG). The clinical characteristics of patients with different gene variants were analyzed, and the clinical diagnosis and genetic diagnosis were compared.

Results

Among the 26 patients with HS, there were 23 cases of anemia, 25 cases of jaundice, 24 cases of splenomegaly, and 14 cases of cholelithiasis. There were 16 cases with family history and 10 cases without family history. The results of HS mutation test were positive in 25 cases and negative in 1 case. A total of 18 heterozygous mutations of HS pathogenic genes were detected in 19 families, among which 14 were pathogenic, 1 was likely pathogenic and 3 were of unknown significance. SPTB mutations (12) and ANK1 mutations (4) were the most common. The main variation types were nonsense mutation (9). There were no significant differences in peripheral blood cell parameters and hemolysis indicators between the SPTB mutant group and the ANK1 mutant group (all P>0.05). The rate of splenectomy in ANK1 mutation group was higher than that in SPTB mutation group, and the difference was statistically significant (χ2=6.970, P=0.014). There were no significant differences in peripheral blood cell parameters and hemolysis indicators among different mutation types (nonsense mutation, frameshift mutation, splice site mutation and missense mutation) (all P>0.05). Among the 18 clinically confirmedpatients, there were 17 cases whose diagnosis is consistent with the genetic diagnosis. Eight patients were clinically suspected, and all of them were confirmed by detection of HS gene mutation. Twenty-four patients with HS underwent UGT1A1 mutation detection, among which 5 patients carried UGT1A1 mutation resulting in a decrease in enzyme activity, and 19 patients had normal enzyme activity. The level of total bilirubin (TBIL) in the group with reduced enzyme activity was higher than that in the group with normal enzyme activity, and the difference was statistically significant (U=22, P=0.038).

Conclusion

Most patients with HS have anemia, jaundice and splenomegaly, often accompanied by cholelithiasis. SPTB and ANK1 mutations are the most common mutations in HS pathogenic genes among patients in Hunan, China, and there was no significant correlation between genotype and clinical phenotype. Genetic diagnosis is highly consistent with clinical diagnosis. The decrease of UGT1A1 enzyme activity can lead to the aggravation of jaundice in HS patients. Clinical combined gene diagnosis is beneficial for the rapid and precision diagnosis of HS. The detection of UGT1A1 enzyme activity related gene variation plays an important role in evaluation of HS jaundice.

Keywords: hereditary spherocytosis, clinical phenotype, next-generation sequencing, genotype, genetic diagnosis, uridine diphosphate-glucuronosyl transferase 1 family polypeptide A1

遗传性球形红细胞增多症(hereditary spherocytosis,HS)是一种外周血可见球形红细胞的遗传性溶血性疾病,在北欧裔人群的发病率超过1꞉2 000,在中国虽无确切的发病率数据,但也是最常见的红细胞膜缺陷病[1]。HS临床特点为溶血性贫血、黄疸和脾大,常并发胆石症;在任何年龄均可发病,临床症状轻重不一,可从无明显症状至危及生命的贫血、巨脾和重度黄疸;遗传模式以常染色体显性遗传为主,部分以常染色体隐性模式遗传[2-3]。以往HS的临床诊断主要根据临床表现、家族史,结合实验室检查,如外周血球形红细胞(peripheral blood spherocytes,PBS)计数、红细胞渗透脆性试验(osmotic fragility test,OFT)等。但是由于部分HS患者临床表现不典型、缺乏家族史、PBS计数缺乏具有诊断意义的判定值、OFT的敏感性和特异性欠佳等,HS的漏诊率、误诊率高[4]。

目前已明确的HS致病基因包括ANK1、SLC4A1、SPTA1、SPTB和EPB42,这些基因分别编码锚蛋白、带3蛋白、α收缩蛋白、β收缩蛋白和4.2蛋白。由于HS致病基因较多,且无突变热点,Sanger测序工作量大、费用高,限制了基因诊断的临床应用[5]。研究[6-8]还发现:HS患者的黄疸严重程度即胆红素水平,还受参与胆红素代谢过程的关键酶尿苷二磷酸葡萄糖醛酸转移酶1家族多肽A1(uridine diphosphate-glucuronosyl transferase 1 family polypeptide A1,UGT1A1)活性的影响。这使HS的临床表现与基因变异的相关性更加复杂。近年来,二代测序(next-generation sequencing,NGS)开始应用于血液遗传病的基因诊断[5],提高了HS的诊断水平。

本研究旨在进一步明确HS基因诊断与临床诊断的一致性,探讨将基因诊断常规应用于HS诊断的可行性,同时分析中国人种HS相关基因变异的特征。

1. 对象与方法1.1. 研究对象及临床资料收集

本研究为回顾性研究。收集2018年1月至2021年9月中南大学湘雅二医院血液内科门诊及住院部收治的中国湖南HS患者临床资料。HS的诊断标准[9-10]:1)有家族史,有溶血、脾大表现,平均血红蛋白浓度(mean corpuscular hemoglobin concentration,MCHC)、网织红细胞(reticulocyte,RET)比值高,外周血中多量球形红细胞,OFT或EMA结合试验阳性可临床确诊;2)无家族史、实验室检测结果不典型(如OFT阴性、外周血球形红细胞量不多,但EMA结合试验阳性)判断为临床疑诊,如HS致病基因突变阳性可确诊;3)无家族史,实验室检测结果疑诊HS,但基因分析未能发现致病基因者,结合切脾治疗疗效,排除其他溶血性疾病仍可临床诊断为HS。所有患者均排除葡萄糖6磷酸脱氢酶(glucose-6-phosphate dehydrogenase,G-6-PD)缺乏、地中海贫血、血红蛋白病、免疫性溶血等。HS严重程度分型参考文献[10]。

收集的临床资料包括:1)患者的年龄、性别、家族史;2)患者的临床表现和治疗过程;3)血常规、RET、总胆红素(total bilirubin,TBIL)、PBS计数、OFT、EMA结合试验等实验室检查结果及腹部彩色多普勒超声检查或CT检查结果。血常规标本为患者输血前、切脾前采集,避开各种感染期;并发胆石症患者TBIL测定避开胆道梗阻期。本研究已获得患者本人或其监护人同意,并获得医院伦理委员会批准(审批号:2014伦审第S046号)。

1.2. NGS与Sanger测序

采用二代测序结合Sanger测序以鉴定HS致病基因突变和UGT1A1活性。所有患者均抽取EDTA抗凝血4 mL,采用QIAamp DNA Blood Mini Kit(德国Qiagen公司)提取基因组DNA;用SureSelectXT试剂盒(美国Aglient公司)构建基因组DNA文库;应用Illumina HiSeq测序平台对扩增的PCR产物进行测序;将测序结果与加利福尼亚大学圣克鲁兹分校数据库提供的人类基因组hg19参考序列进行比对,基因参考序列转录本分别是:ANK1({"type":"entrez-nucleotide","attrs":{"text":"NM_000037","term_id":"1677530231","term_text":"NM_000037"}}NM_000037)、SPTB({"type":"entrez-nucleotide","attrs":{"text":"NM_001355437","term_id":"1388739945","term_text":"NM_001355437"}}NM_001355437)、SPTA1({"type":"entrez-nucleotide","attrs":{"text":"NM_003126","term_id":"1653961636","term_text":"NM_003126"}}NM_003126)、SLC4A1({"type":"entrez-nucleotide","attrs":{"text":"NM_000342","term_id":"1519246350","term_text":"NM_000342"}}NM_000342)、EPB4.2({"type":"entrez-nucleotide","attrs":{"text":"NM_000119","term_id":"1388003380","term_text":"NM_000119"}}NM_000119)。

利用生物学软件MutationTaster、SIFT、Poly-phen2、Genie对上述全外显子NGS检测到的HS致病基因变异进行效应预测;同时对包含突变位点的DNA进行PCR扩增,产物于湖南擎科生物技术有限公司行Sanger测序确认致病基因突变;并行家系验证。依据美国医学遗传学与基因组学学会(American College of Medical Genetics and Genomics,ACMG)发布的《序列变异解释的标准和指南》[11],对HS致病基因突变进行致病性判读。

在上述全外显子NGS分析UGT1A1基因编码区变异的基础上,采用PCR扩增启动子区和增强子区、Sanger测序,并进一步与标准序列UGT1A1({"type":"entrez-nucleotide","attrs":{"text":"NM_000463","term_id":"1732746141","term_text":"NM_000463"}}NM_000463)比对。UGT1A1酶活性的鉴定参考文献[12],UGT1A1变异体酶活性为野生型UGT1A1酶活性的30%~60%被定义为酶活性降低。

1.3. 统计学处理

应用SPSS 23.0软件对数据进行统计分析,非正态分布计量资料以中位数(第1四分位数,第3四分位数)[M(P 25, P 75)]表示。比较不同致病基因突变及不同突变类型(无义突变、移码突变、剪接位点突变及错义突变)组间外周血红细胞参数及溶血指标,比较酶活性降低组和正常组间TBIL,两个独立样本用Mann-Whitney U检验,多样本用Kruskal-Wallis H检验;比较不同致病基因突变组间、酶活性降低组和正常组间切脾率和胆囊切除率用Pearson χ2检验。P20%,14例在11%~20%之间,2例等于10%。16例患者行OFT,其中11例阳性;11例行EMA,均为阳性。25例患者临床特征见表1。

表1

25例HS患者临床特征

Table 1 Clinical characteristics of 25 HS patients

临床特征例数构成比/%Hb/(g·L-1)>100135280~10041610~201456>20936RET百分比/%3~6313>6~10417>101670TBIL/(µmol·L-1)17~34312>34~51312>511976Open in a separate window

HS:遗传性球形红细胞增多症;Hb:血红蛋白;PBS:外周血球形红细胞;RET:网织红细胞;TBIL:总胆红素。

根据诊断时患者的Hb、RET、TBIL水平及切脾指征,26例HS患者中轻型1例、中间型1例、重型24例。16例有家族史,来自9个不同家系(图1),以常染色体显性模式遗传。

Open in a separate window图1

遗传家系图

Figure 1 Genetic family diagram

2.2. HS致病基因突变

26例患者分别来自19个不同家系。25例患者的HS致病基因突变检测结果为阳性,1例为阴性。共检测出18个HS致病基因杂合突变,依据ACMG指南的判读结果为:14个致病性变异,1个可能致病性变异,3个意义未明变异(因无法获得家系成员的血标本,未能行家系验证)。18个HS致病基因突变涉及4种基因,为SPTB、ANK1、SLC4A1和SPTA1,其中SPTB突变12个,ANK1突变4个,SLC4A1突变1个,SPTA1复合杂合突变1个。共检出9个无义突变,4个移码突变,4个错义突变,1个剪接位点突变。9个为已报道变异[6, 13-17],9个为首次报道的新变异,包括:4个SPTB变异[c.1311G>A(p.W437X)、c.820_821insT(p.Y274Lfs*22)、c.1795+1G>T、c.5350G>A(p.E1784K)],3个ANK1变异[c.923_924insG(p.E309Nfs*47)、c.2464_ 2465insG(p.E822Gfs*9)、c.3255_3255delC(p.S1085Rfs*20),1个SLC4A1变异[c.1163G>C(p.R388P)],1个SPTA1变异[c.7139T>A(p.L2380H)]。详见表2。

表2

19个家系HS致病基因突变分析

Table 2 Mutation analysis of HS pathogenic genes in 19 families

先证者

致病

基因

突变位点氨基酸改变突变类型致病性判读是否新发变异是否新变异序号性别年龄/岁外显子cDNAF1-II-2男32 SPTB 204291C>TR1431X无义致病性变异否否F2-II-2男7 SPTB 111591C>TQ531X无义致病性变异是否F3-II-2女43 SPTB 204267C>TR1423X无义致病性变异是否F4-II-13女48 SPTB 121795+1G>TNA剪接位点致病性变异否是F5-III-1男16 SPTB 121912C>TR638X无义致病性变异否否F6-II-1男16 SPTB 255266C>TR1756X无义致病性变异是否F7-II-1男38 SPTB 255350G>AE1784K错义意义未明NA是F8-II-4女36 ANK1 232464_2465insGE822Gfs*9移码致病性变异否是F9-II-4女47 ANK1 10923_924insGE309Nfs*47移码致病性变异是是F10-III-1男20 ANK1 283255_3255delCS1085Rfs*20移码致病性变异否是F11-III-1女12 ANK1 374462C>T1488X无义致病性变异是否F12-II-4女39 SLC4A1 111163G>CR388P错义意义未明NA是F13-II-1女20 SPTA1 527139T>AL2380H错义可能致病性变异否是F14-II-1男29 SPTB 234873C>TR1625X无义致病性变异是否F15-II-1男43 SPTB 193916C>TR1306X无义致病性变异否否F16-III-8男30 SPTB 101311G>AW437X无义致病性变异否是F17-III-1女16 SPTB 153103C>TR1035W错义意义未明NA否F18-II-1男55 SPTB 8820_821insTY274fs*22移码致病性变异否是F19-II-3女52————————Open in a separate window

F7-II-1、F12-II-4和F17-III-1未行家系验证,不能明确其致病基因变异是否为自发变异;NA:无资料。

2.3. HS致病基因突变与表型的相关性

SPTB突变组(17例患者)与ANK1突变组(5例患者)在外周血红细胞参数及溶血指标[Hb、PBS百分比、MCV、MCHC、RET绝对值和百分比、TBIL]方面的差异均无统计学意义(均P>0.05,表3)。ANK1突变组患者均接受脾切除术,而SPTB突变组切脾患者仅占33.3%,ANK1突变组切脾率高于SPTB突变组,差异有统计学意义(χ2=6.970,P=0.014)。ANK1突变组、SPTB突变组患者胆囊切除/切开率分别为60.0%、44.4%,2组间差异无统计学意义(χ2=0.379,P=0.455)。

表3

不同HS致病基因突变组间外周血红细胞参数及溶血指标比较

Table 3 Comparison of peripheral blood erythrocyte parameters and hemolysis indexes between different HS pathogenic gene mutation groups

突变基因 n Hb/(g·L-1)MCV/fl

MCHC/

(g·L-1)

PBS占比/%RET绝对值/(×109·L-1)RET 百分比/%

TBIL/

(µmol·L-1)

SPTB 17105(80, 119)

90.8

(88.1, 94.4)

345(336, 359)

15.2

(13.8, 22.0)

306(206, 456)

11.24

(6.84, 13.30)

75.60

(52.35,89.40)

ANK1 578(59, 116)

92.2

(91.1, 102.6)

336(317, 353)

23.2

(14.1, 40.0)

306(181, 500)

10.89

(7.49, 13.96)

69.10

(43.25,125.00)

U 29.50027.00029.00029.00031.00032.00040.000 P 0.1590.1250.1600.1600.4820.5000.440Open in a separate window

数据以中位数(第1四分位数,第3四分位数)表示。HS:遗传性球形红细胞增多症;Hb:血红蛋白;MCV:平均红细胞体积;MCHC:平均红细胞血红蛋白浓度;PBS:外周血球形红细胞;RET:网织红细胞;TBIL:总胆红素。

不同突变类型(无义突变10例、移码突变6例、剪接位点4例突变及错义突变4例)组间以上外周血红细胞参数及溶血指标差异亦均无统计学意义(均P>0.05,表4)。

表4

不同突变类型间的外周血红细胞参数及溶血指标比较

Table 4 Comparison of peripheral blood erythrocyte parameters and hemolysis indexes between groups with different HS pathogenic gene mutation types

突变类型例数Hb/(g·L-1)MCV/flMCHC/ (g·L-1)PBS/%RET绝对值/(×109·L-1)RET 百分比/%

TBIL/

(µmol·L-1)

无义突变10

108

(78~116)

92.4

(88.8, 95.7)

345(334, 364)

14.5

(12.7, 19.7)

381(300, 483)

12.04

(9.98, 13.82)

86.35

(65.75,100.68)

移码突变6

92

(65, 114)

91.3

(88.2, 98.7)

338(319, 350)

23.1

(15.0, 52.1)

278(199, 430)

10.91

(8.39, 14.33)

65.85

(50.78,79.35)

剪接位点突变4

80

(68, 136)

87.4

(78.5, 92.5)

350(326, 358)

17.1

(13.8, 27.3)

194(165, 194)

8.09

(5.09, 8.46)

70.88

(27.78,131.46)

错义突变4

116

(86, 128)

95.3

(90.0, 101.5)

347(316, 364)

19.0

(15.3, 23.6)

490(237, 637)

12.91

(6.43, 21.85)

72.95

(45.78,115.20)

H 2.3183.6551.4134.1744.7603.3232.655 P 0.5090.3010.7670.2430.1960.3440.448Open in a separate window

数据以中位数(第1四分位数,第3四分位数)表示。HS:遗传性球形红细胞增多症;Hb:血红蛋白;MCV:平均红细胞体积;MCHC:平均红细胞血红蛋白浓度;PBS:外周血球形红细胞;RET:网织红细胞;TBIL:总胆红素。

2.4. 临床诊断与基因诊断的一致性

在26例HS患者中,临床确诊者18例,其中17例HS致病基因突变检测阳性,1例阴性,临床诊断与基因诊断一致者为94.4%(17/18);临床疑诊8例,进一步行基因检测,均检出HS致病基因突变,进而明确HS诊断。

2.5. UGT1A1酶活性与胆红素水平的相关性

24例HS患者行UGT1A1变异检测,5例患者携带UGT1A1变异导致酶活性降低,19例酶活性正常。前者的TBIL为89.70(65.70,173.35) µmol/L,后者的TBIL为71.50(48.50,87.00) µmol/L,酶活性降低组较酶活性正常组的TBIL水平高,差异具有统计学意义(U=22,P=0.038)。酶活性降低组和酶活性正常组分别有3、8例行脾切除术,3、9例行胆囊切除/切开取石术,2组间切脾率(χ2=0.511,P=0.415)、胆囊切除/切开率(χ2=0.253,P=0.500)差异均无统计学意义。

3. 讨 论

HS是常见的遗传性溶血性疾病,男女发病率无明显差异,临床表现个体差异大。部分患者由于无家族史,临床表现和实验室检查结果不典型等原因,临床确诊困难[2, 18]。本课题组曾将HS致病基因突变检测应用于临床诊断,成功诊断了临床诊断困难的HS患者,同时明确了其遗传方式,并解释了同一家系的不同个体间黄疸等临床特征差异大的遗传学基础[7, 19]。本研究在HS临床诊断中,使用敏感性、特异性高的伊红-5’-马来酰胺(eosin-5’-maleimide,EMA)结合试验[20],有效提高了HS临床诊断的可靠性;同时将全外显子NGS与Sanger测序相结合,对26例临床诊断或疑诊的HS患者进行HS致病基因突变和UGT1A1活性鉴定;进而将患者的临床表型与基因变异进行对比分析,鉴定HS临床和基因诊断的一致性,探讨二者联合应用于HS诊断的临床应用价值。

本研究中的患者大多有贫血、黄疸和脾大的临床表现,超过半数患者合并胆石症,但是即使在同一家系中,不同HS患者的临床表现差异仍然很大。例如:在F4家系中,F4-III-16表现为巨脾、轻度贫血,TBIL明显升高(151.10 µmol/L),16岁时行“巨脾切除术”;而同一家系29岁的F4-III-10无贫血、无明显脾大(超声检测显示脾厚40 mm),仅TBIL轻度升高(29.20 µmol/L),在家系调查中才被发现。同时,值得注意的是,本研究中38.5%的患者无家族史,提示无家族史的HS患者并不少见,临床诊断中应注意避免漏诊此类患者。

本研究中的患者血常规检测指标MCV低于正常者仅占8%,仅32%的患者MCHC大于正常值,提示MCV、MCHC异常不应作为HS诊断的依据。本研究中患者的RET绝对值、RET百分比、TBIL均增高,符合溶血性疾病的特征。球形红细胞是HS的特征之一,PBS百分比>10%高度提示HS可能,但需排除自身免疫性溶血性贫血等其他伴有球形红细胞增多的溶血性疾病[10]。同时球形红细胞的识别易受涂片质量及检验人员经验影响。在保证两者均处于最佳状态的前提下,本研究中92%的患者PBS百分比>10%,提示PBS百分比>10%可作为HS诊断的敏感指标。但仍有8%的患者PBS百分比等于10%;同时在家系分析时,我们发现少数正常家系成员的PBS百分比达8%,因此对于PBS百分比为10%左右的患者,其确诊仍需其他检测手段。

在本研究中,16例患者行红细胞OFT,11例阳性,敏感性较低,提示红细胞OFT用于诊断HS的敏感性较差,与文献[4]的结论一致;原因可能与该试验耗时较长,检验结果易受外界条件影响有关。EMA结合试验可直接靶向HS的细胞膜结构缺陷,其敏感性与临床表型、疾病的严重程度无关,结果也不受近期输血及脾切除术的影响[4, 21]。本研究中,11例行EMA结合试验的患者均获阳性结果,敏感性达100%,提示对于HS诊断,EMA结合试验显著优于红细胞OFT。

HS致病基因突变谱有较大的地域及人种差异[22]。有研究[23]显示:在美国及欧洲ANK1、SPTB、SLC4A1、SPTA1及EPB42基因突变的比例分别是60%、10%、15%、10%及5%;在荷兰,HS患者致病基因突变占前3位的依次是SPTA1、ANK1和SPTB [24];在日本,HS以EPB42突变为主[25]。在中国近年几项单中心、小样本的HS研究[14, 17, 26-27]中,致病基因突变以ANK1和SPTB突变为主,且两者比例相近。本研究检出的18个致病基因突变,以SPTB突变最多,占66.7%,其次为ANK1突变,占22.2%,与韩国Choi等[6]的研究结果相近。

值得注意的是,本研究发现的9个新HS致病基因变异,SPTB c.5350G>A(p.E1784K)为错义突变,第1 784位的谷氨酸位于多个物种间的高度保守区域,软件预测会影响β收缩蛋白的功能,可导致球形红细胞增多,与患者的临床表型相符;SPTB c.1311G> A(p.W437X)为无义突变,由β收缩蛋白的第437位氨基酸由色氨酸突变为终止密码子,可能导致基因功能丧失;SPTB c.820_821insT(p.Y274Lfs*22)为移码突变,导致β收缩蛋白的第274位氨基酸由酪氨酸突变为亮氨酸并导致其后的22个氨基酸序列发生紊乱并提前终止,该变异也是无义突变,可能导致基因功能丧失;SPTB c.1795+1G>T为经典剪接位点突变,软件预测其会影响mRNA的剪接,有研究[28]报道在1名HS患者检出该位点的不同脱氧核苷酸变异c.1795+1G>A,进一步通过cDNA扩增发现该变异会导致异常剪接的发生;ANK1 c.2464_2465insG(p.E822Gfs*9)和c.923_924insC(p.1309Nfs*47)位于锚蛋白的膜蛋白结合域,c.3255_3255delC(p.S1085Rfs*20)位于锚蛋白的收缩蛋白结合域,三者均为移码突变,经软件预测均影响锚蛋白的功能,为非常强的致病性证据;SPTA1 c.7139T>A(p.L2380H)可导致α收缩蛋白减少。SLC4A1 c.1163G>C(p.R388P)位于细胞质结构域,第388位的精氨酸位于多个物种间的高度保守区域,经软件预测会影响区带3蛋白的功能。

关于HS致病基因突变与临床表型的相关性,研究[6]结果显示:不同基因突变组,甚至基因突变阴性组与突变组之间,HS患者的溶血、贫血和疾病严重程度差异均无统计学意义。在本研究中,SPTB突变组与ANK1突变组,外周血Hb、PBS百分比、MCV、MCHC、RET绝对值和百分比、TBIL差异均无统计学意义,与研究[14, 17, 24]报道一致。然而,ANK1突变组切脾率明显高于SPTB突变组,与Park等[29]的结论一致,但2组的胆囊切除/切开率差异无统计学意义。是否为ANK1突变组脾肿大程度较SPTB突变组更严重,因此更需接受切脾治疗所致,需要大样本的研究验证。另有研究[15]报道:SLC4A1突变较其他突变临床症状轻(Hb水平高、RET百分比低、TBIL水平低),SPTA1突变临床症状重。本研究中1例SLC4A1突变患者(F12-II-4)的Hb 115 g/L,RET百分比13.67%,TBIL 42.3 µmol/L,未行脾切除术;而1例SPTA1突变患者(F13-II-1)的Hb 76 g/L,RET百分比 24.57%,TBIL 123.7 µmol/L,接受胆囊及脾切除手术治疗,临床症状重于前者,与该研究[15]相符。

在本研究中,无义突变、移码突变、剪接位点突变、错义突变组间,外周血Hb、PBS百分比、MCV、MCHC、RET绝对值和百分比、TBIL差异均无统计学意义,与以往研究[14, 17, 24]一致。同时,HS个体表型差异大(甚至在同一家系中),提示HS的临床表型除受其致病基因突变调控外,还可能受到其他修饰基因变异、个体骨髓造血代偿功能、感染等因素的影响。HS基因型与临床表型的相关性有待进一步研究。

本研究采用NGS技术在26例患者中检测出25例存在HS致病基因突变,基因诊断与临床诊断具有高度一致性。本研究检测出18个不同的杂合突变,15个为致病性/可能致病性变异,3个为意义未明变异(尽管在正常人数据库中未发现,软件预测为致病性变异,但未能获得父母/子女的血样,未能进行家系验证,故仅能判断为意义未明变异)。虽然此3例HS患者基因变异判读为意义不明变异,但均可临床确诊,因此临床诊断可弥补基因诊断的不足,同时丰富了HS致病基因突变谱,有利于变异致病性判读。本研究有1例HS患者未能检测出HS致病基因变异,可能为具有调控功能的HS致病基因非编码区变异,或其他未明确的HS致病基因变异所致。

另一方面,本研究中的8例临床疑诊病例,通过HS致病基因检测明确了HS诊断。因此,基因诊断的临床应用提升了临床上HS的诊断水平。同时,在临床表型个体差异大的家系中,基因诊断对于临床症状不典型患者的早期确诊具有独特的优势,例如F4中F4-III-10及其1岁的儿子(F4-IV-5)的早期诊断,都源于基因诊断。此外,本研究组利用NGS曾在同一家系鉴定出2种不同的HS致病基因突变[19]。另外,本研究组曾接诊2例溶血性贫血患者,PBS占比超过10%,伴有脾大,排除了其他遗传性溶血性贫血和自身免疫性溶血性贫血,其中1例患者红细胞OFT也呈阳性,因此临床疑诊HS。但该2例患者均无家族史,EMA均正常,临床确诊困难。NGS检测未发现HS致病基因变异,通过临床结合基因诊断排除了HS。综上,HS临床表型具有异质性、复杂性,基因检测能弥补传统检测方法的不足,为HS提供了高效的病因学诊断,可快速鉴定致病基因突变,从而明确诊断,将临床检测和NGS基因检测技术相结合,可大大提高HS的诊断水平,并为遗传咨询提供可靠依据。

UGT1A1酶活性降低可能导致HS患者黄疸加重[7]。UGT1A1基因编码UGT1A1,该基因变异可导致UGT1A1酶活性降低,是Gilbert综合征的病因[29]。本研究通过对24例HS患者UGT1A1基因编码区和调控区进行测序,发现UGT1A1酶活性为野生型的30%~60%者5例,正常者19例。比较2组间的TBIL水平差异,结果显示前者的TBIL水平较后者明显升高。UGT1A1酶活性降低,可能导致HS患者TBIL水平升高。由于UGT1A1酶活性降低在人群中相当常见[12],因此当HS患者黄疸与溶血程度不一致时,应考虑UGT1A1变异的可能性,完善UGT1A1基因检测,评估UGT1A1酶活性,以明确病因及指导治疗。

总之,本研究明确了HS致病基因突变检查的临床可行性,基因诊断和临床诊断不仅具有高度的一致性,而且二者结合可提高HS的诊断水平;同时本研究鉴定出9个新的HS致病基因变异,大大丰富了HS基因突变数据库;本研究还明确了UGT1A1酶活性降低是HS患者黄疸的加重因素,对于HS患者,特别是以黄疸为突出表现的HS患者,应行UGT1A1基因变异检测,明确是否存在UGT1A1酶活性降低对HS临床表型的影响。因此,HS相关基因变异分析可提高HS诊断水平,明确其临床特征的遗传学基础,并为遗传咨询提供可靠依据,应在临床上推广应用。

基金资助

湖南省自然科学基金(2019JJ50869,2018JJ2562)。

This work was supported by the Natural Science Foundation of Hunan Province (2019JJ50869, 2018JJ2562), China.

利益冲突声明

作者声称无任何利益冲突。

作者贡献

白丽红 实验操作,数据统计与分析,论文构想与撰写;郑丽萍、李彬媛 病例收集,实验操作;黄惠 数据统计与分析;易彦、施小六 实验设计,论文审阅与修订。所有作者阅读并同意最终的文本。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202304565.pdf

参考文献1. Wang C, Cui Y, Li Y, et al.. A systematic review of hereditary spherocytosis reported in Chinese biomedical journals from 1978 to 2013 and estimation of the prevalence of the disease using a disease model[J]. Intractable Rare Dis Res, 2015, 4(2): 76-81. 10.5582/irdr.2015.01002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]2. Da Costa L, Galimand J, Fenneteau O, et al.. Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders[J]. Blood Rev, 2013, 27(4): 167-178. 10.1016/j.blre.2013.04.003. [PubMed] [CrossRef] [Google Scholar]3. Perrotta S, Gallagher PG, Mohandas N. Hereditary spherocytosis[J]. Lancet, 2008, 372(9647): 1411-1426. 10.1016/S0140-6736(08)61588-3. [PubMed] [CrossRef] [Google Scholar]4. King MJ, Zanella A. Hereditary red cell membrane disorders and laboratory diagnostic testing[J]. Int J Lab Hematol, 2013, 35(3): 237-243. 10.1111/ijlh.12070. [PubMed] [CrossRef] [Google Scholar]5. Kim Y, Park J, Kim M. Diagnostic approaches for inherited hemolytic anemia in the genetic era[J]. Blood Res, 2017, 52(2): 84-94. 10.5045/br.2017.52.2.84. [PMC free article] [PubMed] [CrossRef] [Google Scholar]6. Choi HS, Choi Q, Kim JA, et al.. Molecular diagnosis of hereditary spherocytosis by multi-gene target sequencing in Korea: Matching with osmotic fragility test and presence of spherocyte[J]. Orphanet J Rare Dis, 2019, 14(1): 114. 10.1186/s13023-019-1070-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]7. Yi Y, Dang X, Li Y, et al.. Genetic diagnosis and pathogenic analysis of an atypical hereditary spherocytosis combined with UGT1A1 partial deficiency: A case report[J]. Mol Med Rep, 2018, 17(1): 382-387. 10.3892/mmr.2017.7867. [PubMed] [CrossRef] [Google Scholar]8. Aggarwal A, Jamwal M, Sharma P, et al.. Deciphering molecular heterogeneity of Indian families with hereditary spherocytosis using targeted next-generation sequencing: First South Asian study[J]. Br J Haematol, 2020, 188(5): 784-795. 10.1111/bjh.16244. [PubMed] [CrossRef] [Google Scholar]9. 张之南, 郝玉书, 赵永强, 等. 血液病学[M]. 2版. 北京: 人民卫生出版社, 2003: 337-338. [Google Scholar] ZHANG Zhinan, HAO Yushu, ZHAO Yongqiang, et al.. Hematology[M]. 2nd ed. Beijing: People’s Medical Publishing House, 2003: 337-338. [Google Scholar]10. Bolton-Maggs PH, Langer JC, Iolascon A, et al.. Guidelines for the diagnosis and management of hereditary spherocytosis—2011 update[J]. Br J Haematol, 2012, 156(1): 37-49. 10.1111/j.1365-2141.2011.08921.x. [PubMed] [CrossRef] [Google Scholar]11. Richards S, Aziz N, Bale S, et al.. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5): 405-424. 10.1038/gim.2015.30. [PMC free article] [PubMed] [CrossRef] [Google Scholar]12. Udomuksorn W, Elliot DJ, Lewis BC, et al.. Influence of mutations associated with Gilbert and Crigler-Najjar type II syndromes on the glucuronidation kinetics of bilirubin and other UDP-glucuronosyltransferase 1A substrates[J]. Pharmacogenet Genomics, 2007, 17(12): 1017-1029. 10.1097/FPC.0b013e328256b1b6. [PubMed] [CrossRef] [Google Scholar]13. Ozcan R, Jarolim P, Lux SE, et al.. Simultaneous (AC)n microsatellite polymorphism analysis and single-stranded conformation polymorphism screening is an efficient strategy for detecting ankyrin-1 mutations in dominant hereditary spherocytosis[J]. Br J Haematol, 2003, 122(4): 669-677. 10.1046/j.1365-2141.2003.04479.x. [PubMed] [CrossRef] [Google Scholar]14. Wang X, Zhang A, Huang M, et al.. Genetic and clinical characteristics of patients with hereditary spherocytosis in Hubei Province of China[J]. Front Genet, 2020, 11: 953. 10.3389/fgene.2020.00953. [PMC free article] [PubMed] [CrossRef] [Google Scholar]15. Tole S, Dhir P, Pugi J, et al.. Genotype-phenotype correlation in children with hereditary spherocytosis[J]. Br J Haematol, 2020, 191(3): 486-496. 10.1111/bjh.16750. [PubMed] [CrossRef] [Google Scholar]16. Xie F, Lei L, Cai B, et al.. Clinical manifestation and phenotypic analysis of novel gene mutation in 28 Chinese children with hereditary spherocytosis[J/OL]. Mol Genet Genomic Med, 2021, 9(4): e1577[2023-03-01]. 10.1002/mgg3.1577. [PMC free article] [PubMed] [CrossRef] [Google Scholar]17. Wang D, Song L, Shen L, et al.. Mutational characteristics of causative genes in Chinese hereditary spherocytosis patients: a report on fourteen cases and a review of the literature[J]. Front Pharmacol, 2021, 12: 644352. 10.3389/fphar.2021.644352. [PMC free article] [PubMed] [CrossRef] [Google Scholar]18. Iolascon A, Andolfo I, Russo R. Advances in understanding the pathogenesis of red cell membrane disorders[J]. Br J Haematol, 2019, 187(1): 13-24. 10.1111/bjh.16126. [PubMed] [CrossRef] [Google Scholar]19. Shen H, Huang H, Luo K, et al.. Two different pathogenic gene mutations coexisted in the same hereditary spherocytosis family manifested with heterogeneous phenotypes[J]. BMC Med Genet, 2019, 20(1): 90. 10.1186/s12881-019-0826-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]20. Ciepiela O. Old and new insights into the diagnosis of hereditary spherocytosis[J]. Ann Transl Med, 2018, 6(17): 339. 10.21037/atm.2018.07.35. [PMC free article] [PubMed] [CrossRef] [Google Scholar]21. More TA, Dalal B, Devendra R, et al.. Applications of imaging flow cytometry in the diagnostic assessment of red cell membrane disorders[J]. Cytometry B Clin Cytom, 2020, 98(3): 238-249. 10.1002/cyto.b.21857. [PubMed] [CrossRef] [Google Scholar]22. Eber S, Lux SE. Hereditary spherocytosis—defects in proteins that connect the membrane skeleton to the lipid bilayer[J]. Semin Hematol, 2004, 41(2): 118-141. 10.1053/j.seminhematol.2004.01.002. [PubMed] [CrossRef] [Google Scholar]23. An X, Mohandas N. Disorders of red cell membrane[J]. Br J Haematol, 2008, 141(3): 367-375. 10.1111/j.1365-2141.2008.07091.x. [PubMed] [CrossRef] [Google Scholar]24. van Vuren A, van der Zwaag B, Huisjes R, et al.. The complexity of genotype-phenotype correlations in hereditary spherocytosis: A cohort of 95 patients: genotype-phenotype correlation in hereditary spherocytosis[J/OL]. Hemasphere, 2019, 3(4): e276[2023-03-01]. 10.1097/HS9.0000000000000276. [PMC free article] [PubMed] [CrossRef] [Google Scholar]25. Yawata Y, Kanzaki A, Yawata A, et al.. Characteristic features of the genotype and phenotype of hereditary spherocytosis in the Japanese population[J]. Int J Hematol, 2000, 71(2): 118-135. [PubMed] [Google Scholar]26. Qin L, Nie Y, Zhang H, et al.. Identification of new mutations in patients with hereditary spherocytosis by next-generation sequencing[J]. J Hum Genet, 2020, 65(4): 427-434. 10.1038/s10038-020-0724-z. [PubMed] [CrossRef] [Google Scholar]27. Wang R, Yang S, Xu M, et al.. Exome sequencing confirms molecular diagnoses in 38 Chinese families with hereditary spherocytosis[J]. Sci China Life Sci, 2018, 61(8): 947-953. 10.1007/s11427-017-9232-6. [PubMed] [CrossRef] [Google Scholar]28. Salas PC, Rosales JM, Milla CP, et al.. A novel mutation in the β- spectrin gene causes the activation of a cryptic 5'-splice site and the creation of a de novo 3'-splice site[J]. Hum Genome Var, 2015, 2: 15029. https:// 10.1038/hgv.2015.29. [PMC free article] [PubMed] [CrossRef] [Google Scholar]29. Park J, Jeong DC, Yoo J, et al.. Mutational characteristics of ANK1 and SPTB genes in hereditary spherocytosis[J]. Clin Genet, 2016, 90(1): 69-78. 10.1111/cge.12749. [PubMed] [CrossRef] [Google Scholar]30. Rets A, Clayton AL, Christensen RD, et al.. Molecular diagnostic update in hereditary hemolytic anemia and neonatal hyperbilirubinemia[J]. Int J Lab Hematol, 2019, 41(Suppl 1): 95-101. https://doi.org/ 10.1111/ijlh.13014. [PubMed] [CrossRef] [Google Scholar]


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3