6.3.1 平面向量的基本定理

您所在的位置:网站首页 平面向量基本定理知识点 6.3.1 平面向量的基本定理

6.3.1 平面向量的基本定理

2024-06-15 09:35| 来源: 网络整理| 查看: 265

\({\color{Red}{欢迎到学科网下载资料学习 }}\) [ 【基础过关系列】高一数学同步精品讲义与分层练习(人教A版2019)] (https://www.zxxk.com/docpack/2921718.html) \({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

必修第二册同步巩固,难度2颗星!

基础知识 平面向量的基本定理

设\(\overrightarrow{e_1}\), \(\overrightarrow{e_2}\)同一平面内的两个不共线向量,\(\vec{a}\)是该平面内任一向量,则存在唯一实数对\((λ,μ)\),使 \(\vec{a}=\lambda \overrightarrow{e_1}+\mu \overrightarrow{e_2}\). 我们把 \(\left\{\overrightarrow{e_1}, \overrightarrow{e_2}\right\}\)叫做表示这个平面内所有向量的一个基底. 如下图, \(\vec{a}=\overrightarrow{O M}+\overrightarrow{O N}=\lambda \overrightarrow{e_1}+\mu \overrightarrow{e_2}\),其中 \(\lambda=\dfrac{|O M|}{|O A|}\), \(\mu=\dfrac{|O N|}{|O B|}\). image.png 解释 (1) 基底\(\left\{\overrightarrow{e_1}, \overrightarrow{e_2}\right\}\)要求\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是不共线向量; (2) 唯一性:若\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)不共线,且 \(\lambda_1 \overrightarrow{e_1}+\mu_1 \overrightarrow{e_2}=\lambda_2 \overrightarrow{e_1}+\mu_2 \overrightarrow{e_2}\) , 则\(λ_1 =λ_2\) ,\(μ_1=μ_2\). (3) 平面内任一向量均可由同一个基底唯一表示,这对研究问题带来极大的便利.  

基本方法 【题型1】 平面向量的基本定理的理解

【典题1】如果\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是(  )  A.\(\overrightarrow{e_1}\)与 \(\overrightarrow{e_1}+\overrightarrow{e_2}\) \(\qquad \qquad \qquad \qquad \qquad\) B.\(\overrightarrow{e_1}-2 \overrightarrow{e_2}\)与 \(\overrightarrow{e_1}+2 \overrightarrow{e_2}\)  C.\(\overrightarrow{e_1}+\overrightarrow{e_2}\)与 \(\overrightarrow{e_1}-\overrightarrow{e_2}\) \(\qquad \qquad \qquad \qquad\) D. \(\overrightarrow{e_1}-2 \overrightarrow{e_2}\)与 \(-\overrightarrow{e_1}+2 \overrightarrow{e_2}\) 解析 \(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是平面内一组不共线的向量,作为基底的向量,前提为不共线向量, 所以对于选项\(ABC\)都为不共线向量,选项\(D\): \(\overrightarrow{e_1}-2 \overrightarrow{e_2}\)与 \(-\overrightarrow{e_1}+2 \overrightarrow{e_2}\)为共线向量. 故选 \(D\). 点拨 作为基底的两个向量要求不共线.  

【巩固练习】

1.若\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是平面内的一组基底,则下列四组向量能作为平面向量的基底的是(  )  A. \(\overrightarrow{e_1}-\overrightarrow{e_2}\), \(\overrightarrow{e_2}-\overrightarrow{e_1}\) \(\qquad \qquad \qquad \qquad\) B. \(2 \overrightarrow{e_1}-\overrightarrow{e_2}\), \(\overrightarrow{e_1}-\dfrac{1}{2} \overrightarrow{e_2}\)  C. \(\overrightarrow{e_1}+\overrightarrow{e_2}\), \(\overrightarrow{e_1}-\overrightarrow{e_2}\) \(\qquad \qquad \qquad \qquad\) D. \(2 \overrightarrow{e_2}-3 \overrightarrow{e_1}\), \(6 \overrightarrow{e_1}-4 \overrightarrow{e_2}\)  

2.如图所示,每个小正方形的边长都是\(1\),则下列说法正确的是(  ) image.png  A. \(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是该平面所有向量的一组基, \(\overrightarrow{A D}-\overrightarrow{A B}+\overrightarrow{C B}=\overrightarrow{e_1}+2 \overrightarrow{e_2}\)  B. \(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是该平面所有向量的一组基, \(\overrightarrow{A D}-\overrightarrow{A B}+\overrightarrow{C B}=2 \overrightarrow{e_1}+\overrightarrow{e_2}\)  C. \(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)不是该平面所有向量的一组基, \(\overrightarrow{A D}-\overrightarrow{A B}+\overrightarrow{C B}=\overrightarrow{e_1}+2 \overrightarrow{e_2}\)  D. \(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)不是该平面所有向量的一组基, \(\overrightarrow{A D}-\overrightarrow{A B}+\overrightarrow{C B}=2 \overrightarrow{e_1}+\overrightarrow{e_2}\)  

3.若\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是平面α内两个不共线的向量,则下列说法中正确的是(  )  A. \(\lambda \overrightarrow{e_1}+\mu \overrightarrow{e_2}(\lambda, \mu \in R)\)不可以表示平面\(α\)内的所有向量  B. 对于平面\(α\)中的任一向量\(\vec{a}\),使\(\vec{a}=\lambda \overrightarrow{e_1}+\mu \overrightarrow{e_2}\)的实数\(λ\),\(μ\)有无数多对  C. 若\(λ_1\),\(μ_1\),\(λ_2\),\(μ_2\)均为实数,且向量\(\lambda_1 \overrightarrow{e_1}+\mu_1 \overrightarrow{e_2}\)与 \(\lambda_2 \overrightarrow{e_1}+\mu_2 \overrightarrow{e_2}\)共线,则有且只有一个实数\(λ\),使 \(\lambda_1 \overrightarrow{e_1}+\mu_1 \overrightarrow{e_2}=\lambda\left(\lambda_2 \overrightarrow{e_1}+\mu_2 \overrightarrow{e_2}\right)\)  D. 若存在实数\(λ\),\(μ\)使\(\lambda \overrightarrow{e_1}+\mu \overrightarrow{e_2}=\overrightarrow{0}\),则 \(\lambda=\mu=0\)  

参考答案

答案 \(C\) 解析 观察四个选项,对于选项\(A\): \(\overrightarrow{e_1}-\overrightarrow{e_2}=-\left(\overrightarrow{e_2}-\overrightarrow{e_1}\right)\), 故\(\overrightarrow{e_1}-\overrightarrow{e_2}\)与 \(\overrightarrow{e_2}-\overrightarrow{e_1}\)共线,所以不能作为基底; \(B\), \(2 \overrightarrow{e_1}-\overrightarrow{e_2}=2\left(\overrightarrow{e_1}-\dfrac{1}{2} \overrightarrow{e_2}\right)\),故\(2 \overrightarrow{e_1}-\overrightarrow{e_2}\)与 \(\overrightarrow{e_1}-\dfrac{1}{2} \overrightarrow{e_2}\)线,所以不能作为基底; \(C\):若\(\overrightarrow{e_1}+\overrightarrow{e_2}\)与\(\overrightarrow{e_1}-\overrightarrow{e_2}\)共线,则 \(\overrightarrow{e_1}+\overrightarrow{e_2}=\lambda\left(\overrightarrow{e_1}-\overrightarrow{e_2}\right)\),可得 \(\left\{\begin{array}{l} \lambda=1 \\ \lambda=-1 \end{array}\right.\), 故不存在\(λ\)使 \(\overrightarrow{e_1}+\overrightarrow{e_2}=\lambda\left(\overrightarrow{e_1}-\overrightarrow{e_2}\right)\),故\(\overrightarrow{e_1}+\overrightarrow{e_2}\)与\(\overrightarrow{e_1}-\overrightarrow{e_2}\)不共线,所以能作为基底; \(D\), \(-2\left(2 \overrightarrow{e_2}-3 \overrightarrow{e_1}\right)=6 \overrightarrow{e_1}-4 \overrightarrow{e_2}\),故\(2 \overrightarrow{e_2}-3 \overrightarrow{e_1}\)与\(6 \overrightarrow{e_1}-4 \overrightarrow{e_2}\)共线,所以不能作为基底; 故选:\(C\).

答案 \(A\) 解析 结合题意,平面向量\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)不共线,是该平面所有向量的一组基底,故\(CD\)错误, 又 \(\because \overrightarrow{A D}-\overrightarrow{A B}+\overrightarrow{C B}=\overrightarrow{A D}-\overrightarrow{A C}=\overrightarrow{C D}=\overrightarrow{e_1}+2 \overrightarrow{e_2}\), 故选:\(A\).

答案 \(D\) 解析 对于\(A\),因为\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是平面α内两个不共线的向量, 所以\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)可以作为平面中所有向量的一组基底,故\(A\)错误; 对于\(B\),由平面向量基本定理可知,\(B\)错误; 对于\(C\),当\(λ_1=λ_2=μ_1=μ_2=0\)时,这样的\(λ\)有无数个,故\(C\)错误; 故选:\(D\).  

【题型2】 平面向量的基本定理的运用

【典题1】 已知在\(△ABC\)中,\(M\),\(N\)分别是边\(AB\)、\(AC\)上的点,且 \(\overrightarrow{A M}=2 \overrightarrow{M B}\), \(\overrightarrow{A N}=3 \overrightarrow{N C}\),\(BN\)与\(CM\)相交于点\(P\),记 \(\vec{a}=\overrightarrow{A B}\), \(\vec{b}=\overrightarrow{A C}\),用\(\vec{a}\),\(\vec{b}\)表示\(\overrightarrow{A P}\)的结果是\(\underline{\quad \quad}\) . 解析 如图, image.png 由题意,可知 \(\overrightarrow{A M}=\dfrac{2}{3} \overrightarrow{A B}\), \(\overrightarrow{A N}=\dfrac{3}{4} \overrightarrow{A C}\), 设\(\overrightarrow{B P}=\lambda \overrightarrow{B N}\), 则有: \(\overrightarrow{A P}=\overrightarrow{A B}+\overrightarrow{B P}=\overrightarrow{A B}+\lambda \overrightarrow{B N}=\overrightarrow{A B}+\lambda(\overrightarrow{A N}-\overrightarrow{A B})\) \(=\overrightarrow{A B}+\lambda \overrightarrow{A N}-\lambda \overrightarrow{A B}=(1-\lambda) \overrightarrow{A B}+\lambda \cdot \dfrac{3}{4} \overrightarrow{A C}=(1-\lambda) \vec{a}+\dfrac{3}{4} \lambda \vec{b}\)① 又设 \(\overrightarrow{C P}=\mu \overrightarrow{C M}\), 则有 \(\overrightarrow{A P}=\overrightarrow{A C}+\overrightarrow{C P}=\overrightarrow{A C}+\mu \overrightarrow{C M}=\overrightarrow{A C}+\mu(\overrightarrow{A M}-\overrightarrow{A C})=\overrightarrow{A C}+\mu \overrightarrow{A M}-\mu \overrightarrow{A C}\) \(=(1-\mu) \overrightarrow{A C}+\mu \cdot \dfrac{2}{3} \overrightarrow{A B}=\dfrac{2}{3} \mu \vec{a}+(1-\mu) \vec{b}\)② 通过比较①②,可得关于\(λ\),\(μ\)的二元一次方程组: \(\left\{\begin{array}{l} 1-\lambda=\dfrac{2}{3} \mu \\ \dfrac{3}{4} \lambda=1-\mu \end{array}\right.\), 解此二元一次方程组,得 \(\left\{\begin{array}{l} \lambda=\dfrac{2}{3} \\ \mu=\dfrac{1}{2} \end{array}\right.\), 将结果带入①式,可得: \(\overrightarrow{A P}=\dfrac{1}{3} \vec{a}+\dfrac{1}{2} \vec{b}\), 故选:\(D\). 点拨 1.若\(\overrightarrow{e_1}\), \(\overrightarrow{e_2}\)不共线,且 \(\lambda_1 \overrightarrow{e_1}+\mu_1 \overrightarrow{e_2}=\lambda_2 \overrightarrow{e_1}+\mu_2 \overrightarrow{e_2}\),则\(λ_1 =λ_2\) ,\(μ_1=μ_2\). 2.向量 \(\overrightarrow{A P}\)用同一基底 \(\vec{a}\), \(\vec{b}\)以两种方式表示 \(\overrightarrow{A P}=(1-\lambda) \vec{a}+\dfrac{3}{4} \lambda \vec{b}=\dfrac{2}{3} \mu \vec{a}+(1-\mu) \vec{b}\),由平面向量基本定理的唯一性求出\(λ\),\(μ\),得到\(\overrightarrow{A P}=\dfrac{1}{3} \vec{a}+\dfrac{1}{2} \vec{b}\).  

【典题2】如图,在平行四边形\(ABCD\)中,\(E\),\(F\)分别为\(BC\),\(CD\)的中点,且 \(\overrightarrow{A F} \cdot \overrightarrow{D E}=4\), \(\overrightarrow{A E} \cdot \overrightarrow{B F}=-1\),则 \(\overrightarrow{A C} \cdot \overrightarrow{B D}=\)\(\underline{\quad \quad}\). image.png 解析 \(\because \overrightarrow{A F}=\overrightarrow{A D}+\overrightarrow{D F}=\overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{D C}=\overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{A B}\), \(\overrightarrow{D E}=\overrightarrow{D C}+\overrightarrow{C E}=\overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{C B}=\overrightarrow{A B}-\dfrac{1}{2} \overrightarrow{A D}\), \(\therefore\left(\overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{A B}\right) \cdot\left(\overrightarrow{A B}-\dfrac{1}{2} \overrightarrow{A D}\right)=4\), 即 \(\dfrac{3}{4} \overrightarrow{A B} \cdot \overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{A B}^2-\dfrac{1}{2} \overrightarrow{A D}^2=4\) ①, \(\because \overrightarrow{A E}=\overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}\),\(\overrightarrow{B F}=\overrightarrow{B C}+\overrightarrow{C F}=\overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{C D}=\overrightarrow{A D}-\dfrac{1}{2} \overrightarrow{A B}\) \(\therefore\left(\overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}\right) \cdot\left(\overrightarrow{A D}-\dfrac{1}{2} \overrightarrow{A B}\right)=-1\), 即 \(\dfrac{3}{4} \overrightarrow{A B} \cdot \overrightarrow{A D}-\dfrac{1}{2} \overrightarrow{A B}^2+\dfrac{1}{2} \overrightarrow{A D}^2=-1\) ②, 由①-②得, \(\overrightarrow{A B}^2-\overrightarrow{A D}^2=5\), \(\therefore \overrightarrow{A C} \cdot \overrightarrow{B D}=(\overrightarrow{A D}+\overrightarrow{A B}) \cdot(\overrightarrow{A D}-\overrightarrow{A B})=\overrightarrow{A D}^2-\overrightarrow{A B}^2=-5\). 故答案为:\(-5\). 点拨 本题直接使用数量积的定义处理显然不行,选择正确基底\(\overrightarrow{A B}\), \(\overrightarrow{A D}\),其他向量用基底表示,则可把问题转化为基底的问题.    

【巩固练习】

1.在\(△ABC\)中,点\(D\)在\(BC\)边上,且\(BD=DC\),点\(E\)在\(AC\)边上,且\(A E=\dfrac{4}{5} A C\),连接\(DE\),若 \(\overrightarrow{D E}=m \overrightarrow{A B}+n \overrightarrow{A C}\),则\(m+n=\)(  )  A. \(-\dfrac{1}{5}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{4}{5}\) \(\qquad \qquad \qquad \qquad\) C. \(-\dfrac{4}{5}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{1}{5}\)  

2.在三角形\(ABC\)中,若 \(|\overrightarrow{A B}+\overrightarrow{B C}|=|\overrightarrow{A B}-\overrightarrow{B C}|\),\(AC=6\),\(AB=3\),\(E\),\(F\)为\(BC\)边的三等分点,则 \(\overrightarrow{A E} \cdot \overrightarrow{A F}=\)(  )  A.\(21\) \(\qquad \qquad \qquad \qquad\) B.\(18\) \(\qquad \qquad \qquad \qquad\) C.\(15\) \(\qquad \qquad \qquad \qquad\) D.\(12\)  

3.如图,在\(△ABC\)中, \(\overrightarrow{A N}=\dfrac{1}{3} \overrightarrow{A C}\),\(P\)是\(BN\)上的一点,若 \(\overrightarrow{A P}=m \overrightarrow{A B}+\dfrac{2}{13} \overrightarrow{A C}\),则实数\(m\)的值为\(\underline{\quad \quad}\) . image.png  

4.如图,在\(▱OACB\)中,\(E\)是\(AC\)的中点,\(F\)是\(BC\)上的一点,且\(BC=3BF\),若\(\overrightarrow{O C}=m \overrightarrow{O E}+n \overrightarrow{O F}\),其中\(m,n∈R\),则\(m+n\)的值为\(\underline{\quad \quad}\) . image.png    

参考答案

答案 \(A\) 解析 由题意得 \(\overrightarrow{D E}=\overrightarrow{D A}+\overrightarrow{A E}=-\dfrac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C})+\dfrac{4}{5} \overrightarrow{A C}=-\dfrac{1}{2} \overrightarrow{A B}+\dfrac{3}{10} \overrightarrow{A C}\), \(\therefore m=-\dfrac{1}{2}\), \(n=\dfrac{3}{10}\), \(m+n=-\dfrac{1}{5}\). 故选:\(A\).

答案 \(C\) 解析 若\(|\overrightarrow{A B}+\overrightarrow{B C}|=|\overrightarrow{A B}-\overrightarrow{B C}|\), image.png 则\(\overrightarrow{A B}^2+\overrightarrow{B C^2}+2 \overrightarrow{A B} \cdot \overrightarrow{B C}=\overrightarrow{A B}^2+\overrightarrow{B C}^2-2 \overrightarrow{A B} \cdot \overrightarrow{B C}\),即有 \(\overrightarrow{A B} \cdot \overrightarrow{B C}=0\), \(∵AC=6\),\(AB=3\),\(∴BC^2=6^2-3^2=27\). \(∵E\),\(F\)为\(BC\)边的三等分点, 则 \(\overrightarrow{A E} \cdot \overrightarrow{A F}=(\overrightarrow{A B}+\overrightarrow{B E})(\overrightarrow{A B}+\overrightarrow{B F})=\left(\overrightarrow{A B}+\dfrac{1}{3} \overrightarrow{B C}\right)\left(\overrightarrow{A B}+\dfrac{2}{3} \overrightarrow{B C}\right)\) \(=\dfrac{2}{9} \overrightarrow{B C}^2+\overrightarrow{A B^2}+\overrightarrow{A B} \cdot \overrightarrow{B C}=\dfrac{2}{9} \times 27+3^2+0=15\). 故选:\(C\).

答案 \(\dfrac{7}{13}\) 解析 因为\(\overrightarrow{A N}=\dfrac{1}{3} \overrightarrow{A C}\),所以\(3 \overrightarrow{A N}=\overrightarrow{A C}\), 又因为\(\overrightarrow{A P}=m \overrightarrow{A B}+\dfrac{2}{13} \overrightarrow{A C}\),所以 \(\overrightarrow{A P}=m \overrightarrow{A B}+\dfrac{6}{13} \overrightarrow{A N}\), 又因为\(B\),\(P\),\(N\)三点共线, 所以 \(\overrightarrow{B P}=\lambda \overrightarrow{B N}(\lambda \neq 0)\), 即\(\overrightarrow{A P}-\overrightarrow{A B}=\lambda(\overrightarrow{A N}-\overrightarrow{A B})(\lambda \neq 0)\), 所以\(\overrightarrow{A P}=\lambda \overrightarrow{A N}+(1-\lambda) \overrightarrow{A B}(\lambda \neq 0)\), 所以 \(\left\{\begin{array}{l} \lambda=\dfrac{6}{13} \\ m=1-\lambda \end{array}\right.\),解得\(m=\dfrac{7}{13}\).

答案 \(\dfrac{7}{5}\) 解析 因为 \(\overrightarrow{O F}=\overrightarrow{O B}+\overrightarrow{B F}=\overrightarrow{O B}+\dfrac{1}{3} \overrightarrow{O A}, \overrightarrow{O E}=\overrightarrow{O A}+\overrightarrow{A E}=\overrightarrow{O A}+\dfrac{1}{2} \overrightarrow{O B}\), 所以 \(\overrightarrow{O A}=\dfrac{6}{5} \overrightarrow{O E}-\dfrac{3}{5} \overrightarrow{O F}\),\(\overrightarrow{O B}=\dfrac{6}{5} \overrightarrow{O F}-\dfrac{2}{5} \overrightarrow{O E}\), 又\(\overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{O B}=\dfrac{6}{5} \overrightarrow{O E}-\dfrac{3}{5} \overrightarrow{O F}+\dfrac{6}{5} \overrightarrow{O F}-\dfrac{2}{5} \overrightarrow{O E}=\dfrac{4}{5} \overrightarrow{O E}+\dfrac{3}{5} \overrightarrow{O F}\), 所以 \(m=\dfrac{4}{5}\), \(n=\dfrac{3}{5}\),故 \(m+n=\dfrac{7}{5}\).  

分层练习 【A组---基础题】

1.设\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是平面内所有向量的一组基底,则下面四组向量中,不能作为基底的是(  )  A.\(\vec{e}_1+\vec{e}_2\)和 \(\vec{e}_1-3 \vec{e}_2\) \(\qquad \qquad \qquad \qquad \qquad\) B.\(\vec{e}_1+6 \vec{e}_2\)和 \(\vec{e}_1+\vec{e}_2\)  C. \(3 \vec{e}_1-4 \vec{e}_2\)和 \(6 \vec{e}_1-8 \vec{e}_2\) \(\qquad \qquad \qquad \qquad\) D. \(\vec{e}_1+2 \vec{e}_2\)和 \(2 \vec{e_1}-\vec{e_2}\)  

2.在\(△ABC\)中,点\(D\)满足\(\overrightarrow{B D}=2 \overrightarrow{C D}\).记 \(\overrightarrow{A B}=\vec{a}\), \(\overrightarrow{A C}=\vec{b}\),则 \(\overrightarrow{A D}=\)(  )  A. \(-\dfrac{1}{2} \vec{a}+\dfrac{3}{2} \vec{b}\) \(\qquad \qquad\) B. \(\dfrac{1}{3} \vec{a}+\dfrac{2}{3} \vec{b}\) \(\qquad \qquad\) C. \(-\vec{a}+2 \vec{b}\) \(\qquad \qquad\) D. \(\dfrac{1}{2} \vec{a}+\dfrac{1}{2} \vec{b}\)  

3.如图,在四边形\(ABCD\)中,\(E\),\(F\)分别为\(AB\),\(CD\)的中点,若 \(\overrightarrow{A D}=\vec{a}\), \(\overrightarrow{B C}=\vec{b}\),则 \(\overrightarrow{E F}\)(  ) image.png  A. \(\dfrac{1}{2} \vec{a}+\dfrac{1}{2} \vec{b}\) \(\qquad \qquad\) B. \(\dfrac{1}{2} \vec{a}-\dfrac{1}{2} \vec{b}\) \(\qquad \qquad\) C. \(\dfrac{1}{2} \vec{a}+\dfrac{3}{2} \vec{b}\) \(\qquad \qquad\) D. \(\dfrac{1}{2} \vec{a}-\dfrac{3}{2} \vec{b}\)  

4.如图,在\(△ABC\)中, \(\overrightarrow{B M}=\lambda \overrightarrow{B C}\), \(\overrightarrow{N C}=\mu \overrightarrow{A C}\),直线\(AM\)交\(BN\)于点\(Q\), \(\overrightarrow{B Q}=\dfrac{2}{3} \overrightarrow{B N}\),则(  ) image.png  A.\(λ+μ=1\) \(\qquad \qquad \qquad\) B. \(\lambda \mu=\dfrac{1}{4}\) \(\qquad \qquad\) C.\((λ-1)(2μ-3)=1\) \(\qquad \qquad\) D.\((2λ-3)(μ-1)=1\)  

5.如图,在\(△ABC\)中, \(\overrightarrow{A D}=\dfrac{1}{4} \overrightarrow{A B}\), \(\overrightarrow{A E}=\dfrac{1}{2} \overrightarrow{A C}\),\(BE\)和\(CD\)相交于点\(F\),则向量\(\overrightarrow{A F}\)等于(  ) image.png  A. \(\dfrac{1}{7} \overrightarrow{A B}+\dfrac{2}{7} \overrightarrow{A C}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{1}{7} \overrightarrow{A B}+\dfrac{3}{7} \overrightarrow{A C}\)  C.\(\dfrac{1}{14} \overrightarrow{A B}+\dfrac{2}{14} \overrightarrow{A C}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{1}{14} \overrightarrow{A B}+\dfrac{3}{14} \overrightarrow{A C}\)  

6.如图,在\(△ABC\)中, \(\angle B A C=\dfrac{\pi}{3}\), \(\overrightarrow{A D}=2 \overrightarrow{D B}\),\(P\)为\(CD\)上一点,且满足 \(\overrightarrow{A P}=m \overrightarrow{A C}+\dfrac{1}{2} \overrightarrow{A B}\),若\(AC=3\),\(AB=4\),则\(\overrightarrow{A P} \cdot \overrightarrow{C D}\)的值为 \(\underline{\quad \quad}\) . image.png  

7.如图,在\(△ABC\)中, \(\overrightarrow{A N}=\dfrac{1}{2} \overrightarrow{A C}\),\(P\)是\(BN\)的中点,若 \(\overrightarrow{A P}=m \overrightarrow{A B}+n \overrightarrow{A C}\),则\(m+n=\) \(\underline{\quad \quad}\) . image.png  

8.如图,在长方形\(ABCD\)中,\(M\), \(N\) 分别为线段\(BC\),\(CD\)的中点,若 \(\overrightarrow{M N}=\lambda \overrightarrow{A M}+\mu \overrightarrow{B N}\),\(λ\),\(μ∈R\),则\(λ+μ=\) \(\underline{\quad \quad}\). image.png  

9.如图,过\(△ABC\)的重心\(G\)的直线分别交边\(AB\)、\(AC\)于\(P\)、\(Q\)两点,且\(\overrightarrow{A B}=x \overrightarrow{A P}\), \(\overrightarrow{A C}=y \overrightarrow{A Q}\),则\(xy\)的取值范围是\(\underline{\quad \quad}\). image.png    

参考答案

答案 \(C\) 解析 ∵\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是平面内所有向量的一组基底,\(∴\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)不共线, \(∴\vec{e}_1+\vec{e}_2\)和 \(\vec{e}_1-3 \vec{e}_2\)不共线,\(\vec{e}_1+6 \vec{e}_2\)和 \(\vec{e}_1+\vec{e}_2\)不共线, \(\vec{e}_1+2 \vec{e}_2\)和 \(2 \vec{e_1}-\vec{e_2}\)不共线, \(6 \vec{e}_1-8 \vec{e}_2=2\left(3 \vec{e}_1-4 \vec{e}_2\right)\), 故\(3 \vec{e}_1-4 \vec{e}_2\)和 \(6 \vec{e}_1-8 \vec{e}_2\)共线, 故选:\(C\).

答案 \(C\) 解析 由题意可得, \(2 \overrightarrow{A C}=\overrightarrow{A D}+\overrightarrow{A B}\),故 \(\overrightarrow{A D}=2 \overrightarrow{A C}-\overrightarrow{A B}=2 \vec{b}-\vec{a}\).故选:\(C\).

答案 \(A\) 解析 由题意知 \(\overrightarrow{E F}=\overrightarrow{E B}+\overrightarrow{B C}+\overrightarrow{C F}\), \(\overrightarrow{E F}=\overrightarrow{E A}+\overrightarrow{A D}+\overrightarrow{D F}\), 因为\(E\),\(F\)分别为\(AB\),\(CD\)的中点, 所以\(\overrightarrow{E B}=-\overrightarrow{E A}\),\(\overrightarrow{D F}=-\overrightarrow{C F}\) 所以 \(2 \overrightarrow{E F}=\overrightarrow{A D}+\overrightarrow{B C}\), 所以 \(\overrightarrow{E F}=\dfrac{1}{2} \overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{B C}\), 因为\(\overrightarrow{A D}=\vec{a}\), \(\overrightarrow{B C}=\vec{b}\), 所以 \(\overrightarrow{E F}=\dfrac{1}{2} \vec{a}+\dfrac{1}{2} \vec{b}\). 故选:\(A\).

答案 \(C\) 解析 \(\overrightarrow{B Q}=\dfrac{2}{3} \overrightarrow{B N}=\dfrac{2}{3}(\overrightarrow{B A}+\overrightarrow{A N})=\dfrac{2}{3}[\overrightarrow{B A}+(1-\mu) \overrightarrow{A C}]=\dfrac{2}{3}[\overrightarrow{B A}+(1-\mu)(\overrightarrow{B C}-\overrightarrow{B A})]\) \(=\dfrac{2}{3}[\mu \overrightarrow{B A}+(1-\mu) \overrightarrow{B C}]=\dfrac{2}{3} \mu \overrightarrow{B A}+\dfrac{2}{3} \cdot \dfrac{(1-\mu)}{\lambda} \overrightarrow{B M}\), \(∵Q\),\(M\),\(A\)三点共线, \(\therefore \dfrac{2}{3} \mu+\dfrac{2}{3} \cdot \dfrac{1-\mu}{\lambda}=1\),化简整理得\((λ-1)(2μ-3)=1\). 故选:\(C\).

答案 \(B\) 解析 设 \(\overrightarrow{C F}=k \overrightarrow{C D}=k(\overrightarrow{A D}-\overrightarrow{A C})=k\left(\dfrac{1}{4} \overrightarrow{A B}-\overrightarrow{A C}\right)\), \(\because \overrightarrow{B F}=\overrightarrow{B C}+\overrightarrow{C F}=k\left(\dfrac{1}{4} \overrightarrow{A B}-\overrightarrow{A C}\right)+\overrightarrow{A C}-\overrightarrow{A B}=\left(\dfrac{1}{4} k-1\right) \overrightarrow{A B}+(1-k) \overrightarrow{A C}\), \(\overrightarrow{B E}=\overrightarrow{A E}-\overrightarrow{A B}=\dfrac{1}{2} \overrightarrow{A C}-\overrightarrow{A B}\). \(\because \overrightarrow{B F} \| \overrightarrow{B E}\), \(\therefore \overrightarrow{B F}=\lambda \overrightarrow{B E}\),则 \(\left(\dfrac{1}{4} k-1\right) \overrightarrow{A B}+(1-k) \overrightarrow{A C}=\lambda\left(\dfrac{1}{2} \overrightarrow{A C}-\overrightarrow{A B}\right)\). \(\therefore\left\{\begin{array}{l} \dfrac{1}{4} k-1=-\lambda \\ 1-k=\dfrac{1}{2} \lambda \end{array}\right.\), \(\therefore k=\dfrac{4}{7}\), \(\overrightarrow{C F}=\dfrac{1}{7} \overrightarrow{A B}-\dfrac{4}{7} \overrightarrow{A C}\), \(\therefore \overrightarrow{A F}=\overrightarrow{A C}+\overrightarrow{C F}=\dfrac{1}{7} \overrightarrow{A B}+\dfrac{3}{7} \overrightarrow{A C}\). 故选:\(B\).

答案 \(\dfrac{13}{12}\) 解析 \(\because \overrightarrow{A D}=2 \overrightarrow{D B}\), \(\therefore \overrightarrow{A D}=\dfrac{2}{3} \overrightarrow{A B}\), \(\because \overrightarrow{C P} \| \overrightarrow{C D}\), \(\therefore \overrightarrow{C P}=k \overrightarrow{C D}\),即 \(\overrightarrow{A P}-\overrightarrow{A C}=k(\overrightarrow{A D}-\overrightarrow{A C})\), 又\(\because \overrightarrow{A P}=m \overrightarrow{A C}+\dfrac{1}{2} \overrightarrow{A B}\),则 \((m-1) \overrightarrow{A C}+\dfrac{1}{2} \overrightarrow{A B}=k\left(\dfrac{2}{3} \overrightarrow{A B}-\overrightarrow{A C}\right)\), \(\therefore\left\{\begin{array}{l} m-1=-k \\ \dfrac{1}{2}=\dfrac{2}{3} k \end{array}\right.\), \(\therefore k=\dfrac{3}{4}\), \(m=\dfrac{1}{4}\), 则 \(\overrightarrow{A P} \cdot \overrightarrow{C D}=\overrightarrow{A P} \cdot(\overrightarrow{A D}-\overrightarrow{A C})=\left(\dfrac{1}{4} \overrightarrow{A C}+\dfrac{1}{2} \overrightarrow{A B}\right) \cdot\left(\dfrac{2}{3} \overrightarrow{A B}-\overrightarrow{A C}\right)\) \(=\dfrac{1}{3} \overrightarrow{A B}-\dfrac{1}{4} \overrightarrow{A C^2}-\dfrac{1}{3} \overrightarrow{A B} \cdot \overrightarrow{A C}=\dfrac{16}{3}-\dfrac{9}{4}-\dfrac{1}{3} \times 4 \times 3 \cos \dfrac{\pi}{3}=\dfrac{13}{12}\).

答案 \(\dfrac{3}{4}\) 解析 \(∵\)在\(△ABC\)中,\(\overrightarrow{A N}=\dfrac{1}{2} \overrightarrow{A C}\),\(P\)是\(BN\)的中点, \(\therefore \overrightarrow{A P}=\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A N}=\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{4} \overrightarrow{A C}\), \(\therefore m=\dfrac{1}{2}\), \(n=\dfrac{1}{4}\), \(\therefore m+n=\dfrac{3}{4}\).

答案 \(\dfrac{2}{5}\) 解析 在长方形\(ABCD\)中,向量\(\overrightarrow{A B}\),\(\overrightarrow{A D}\)不共线,\(M\),\(N\) 分别为线段\(BC\),\(CD\)的中点, 则有\(\overrightarrow{A M}=\overrightarrow{A B}+\overrightarrow{B M}=\overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}\), \(\overrightarrow{B N}=\overrightarrow{B C}+\overrightarrow{C N}=-\dfrac{1}{2} \overrightarrow{A B}+\overrightarrow{A D}\), \(\overrightarrow{M N}=\overrightarrow{M C}+\overrightarrow{C N}=-\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}\), 因 \(\overrightarrow{M N}=\lambda \overrightarrow{A M}+\mu \overrightarrow{B N}\), 则有 \(-\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}=\lambda\left(\overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}\right)+\mu\left(-\dfrac{1}{2} \overrightarrow{A B}+\overrightarrow{A D}\right)\)\(=\left(\lambda-\dfrac{1}{2} \mu\right) \overrightarrow{A B}+\left(\dfrac{1}{2} \lambda+\mu\right) \overrightarrow{A D}\), 于是得 \(\left\{\begin{array}{l} \lambda-\dfrac{1}{2} \mu=-\dfrac{1}{2} \\ \dfrac{1}{2} \lambda+\mu=\dfrac{1}{2} \end{array}\right.\),解得\(\lambda=-\dfrac{1}{5}\), \(\mu=\dfrac{3}{5}\), 所以 \(\lambda+\mu=\dfrac{2}{5}\).

答案 \(\left[2, \dfrac{9}{4}\right]\) 解析 \(∵P\),\(G\),\(Q\)三点共线,\(∴\)存在\(m\),使 \(\overrightarrow{A G}=m \overrightarrow{A Q}+(1-m) \overrightarrow{A P}\), 又\(∵G\)是\(△ABC\)的重心, \(\therefore \overrightarrow{A G}=\dfrac{1}{3}(\overrightarrow{A B}+\overrightarrow{A C})=\dfrac{1}{3}(y \overrightarrow{A Q}+x \overrightarrow{A P})\), \(\therefore \dfrac{1}{3}(y \overrightarrow{A Q}+x \overrightarrow{A P})=m \overrightarrow{A Q}+(1-m) \overrightarrow{A P}\), \(∴x+y=3\), 又 \(\because \overrightarrow{A B}=x \overrightarrow{A P}\), \(∴1≤x≤2\), 故 \(x y=x(3-x)=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{9}{4}\), 故 \(2 \leq-\left(x-\dfrac{3}{2}\right)^2+\dfrac{9}{4} \leq \dfrac{9}{4}\), 故答案为:\(\left[2, \dfrac{9}{4}\right]\).  

【B组---提高题】

1.(多选)设\(\vec{a}\)是已知的平面向量,向量\(\vec{a}\),\(\vec{b}\), \(\vec{c}\)在同一平面内且两两不共线,下列说法正确的是(  )  A. 给定向量\(\vec{b}\),总存在向量\(\vec{c}\),使 \(\vec{a}=\vec{b}+\vec{c}\)  B. 给定向量\(\vec{b}\)和\(\vec{c}\),总存在实数\(λ\)和\(μ\),使 \(\vec{a}=\lambda \vec{b}+\mu \vec{c}\)  C. 给定单位向量\(\vec{b}\)和正数\(μ\),总存在单位向量\(\vec{c}\)和实数\(λ\),使 \(\vec{a}=\lambda \vec{b}+\mu \vec{c}\)  D. 若 \(|\vec{a}|=2\),存在单位向量\(\vec{b}\),\(\vec{c}\)和正实数\(λ\),\(μ\),使 \(\vec{a}=\lambda \vec{b}+\mu \vec{c}\),则\(λ+μ>2\)  

2.在\(△ABC\)内使\(AP^2+BP^2+CP^2\)的值最小的点\(P\)是\(△ABC\)的(  )  A.外心 \(\qquad \qquad \qquad \qquad\) B.内心 \(\qquad \qquad \qquad \qquad\) C.垂心 \(\qquad \qquad \qquad \qquad\) D.重心  

参考答案

答案 \(ABD\) 解析 对于选项\(A\),给定向量\(\vec{a}\)和\(\vec{b}\),只需求得其向量差 \(\vec{a}-\vec{b}\)即为所求的向量\(\vec{c}\), 故总存在向量\(\vec{c}\),使\(\vec{a}=\vec{b}+\vec{c}\),故\(A\)正确; 对于选项\(B\),当向量\(\vec{b}\),\(\vec{c}\)和\(\vec{a}\)在同一平面内且两两不共线时,向量\(\vec{b}\),\(\vec{c}\)可作基底, 由平面向量基本定理可知结论成立,故\(B\)正确; 对于选项\(C\),取\(\vec{a}=(4,4)\), \(\mu=2\), \(\vec{b}=(1,0)\)无论\(λ\)取何值,向量\(\lambda \vec{b}\)都平行于\(x\)轴, 而向量\(\mu \vec{c}\)的模恒等于\(2\),要使 \(\vec{a}=\lambda \vec{b}+\mu \vec{c}\)成立,根据平行四边形法则,向量\(\mu \vec{c}\)的纵坐标一定为\(4\), 故找不到这样的单位向量\(\vec{c}\)使等式成立,故\(C\)错误; 对于选项\(D\), \(\because|\vec{a}|=(\lambda \vec{b}+\mu \vec{c})^2=\lambda^2+\mu^2+2 \lambda \mu \cos \langle\vec{b}, \vec{c}>=4\),又\(\vec{b}\),\(\vec{c}\)不共线, \(∴λ^2+μ^2+2λμ>4\),即\((λ+μ)^2>4\),即\(λ+μ>2\),故\(D\)正确 故选:\(ABD\).

答案 \(D\) 解析 令 \(\overrightarrow{C A}=\vec{a}\),\(\overrightarrow{C B}=\vec{b}\),设 \(\overrightarrow{C P}=\vec{m}\),则 \(\overrightarrow{A P}=\vec{m}-\vec{a}\), \(\overrightarrow{B P}=\vec{m}-\vec{b}\), image.png 于是 \(A P^2+B P^2+C P^2=\overrightarrow{A P^2}+\overrightarrow{B P^2}+\overrightarrow{C P^2}=(\vec{m}-\vec{a})^2+(\vec{m}-\vec{b})^2+\vec{m}^2\) \(=3 \vec{m}^2-2(\vec{a}+\vec{b}) \cdot \vec{m}+\vec{a}^2+\vec{b}^2=3\left[\vec{m}-\dfrac{1}{3}(\vec{a}+\vec{b})\right]^2-\dfrac{1}{3}(\vec{a}+\vec{b})^2+\vec{a}^2+\vec{b}^2\). 所以当\(\vec{m}=\dfrac{1}{3}(\vec{a}+\vec{b})\)时,\(AP^2+BP^2+CP^2\)最小, 设\(AB\)的中点为\(D\), \(\because \vec{m}=\dfrac{1}{3}(\vec{a}+\vec{b})\), \(\therefore 3 \vec{m}=\vec{a}+\vec{b} \Rightarrow \dfrac{3}{2} \vec{m}=\dfrac{\vec{a}+\vec{b}}{2} \Rightarrow \dfrac{3}{2} \vec{m}=\overrightarrow{C D}\), \(∴\)点\(P\)在边\(AB\)的中线上,同理点\(P\)在边\(AC\)、\(BC\)的中线上 \(∴\)点\(P\)为\(△ABC\)的重心. 故选 \(D\).



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3