干细胞外泌体治疗骨再生的研究现状与展望

您所在的位置:网站首页 干细胞外泌体和干细胞哪个效果好 干细胞外泌体治疗骨再生的研究现状与展望

干细胞外泌体治疗骨再生的研究现状与展望

2024-07-16 18:58| 来源: 网络整理| 查看: 265

摘要

骨再生是复杂的、受精密调控的生理过程,除正常的骨代谢平衡外,骨再生亦发生于骨损伤或骨疾病后的修复过程中。临床上,骨缺损的治疗往往需要通过干预来诱导骨再生,实现的技术手段包括骨移植、生长因子给药、牵引成骨术等。作为近年来新兴的研究领域,外泌体在包括骨缺损在内的一系列适应证中均取得了显著的治疗效果。然而,由于外泌体复杂的化学组成 (由磷脂双分子层包裹的一系列核酸及蛋白质),其机理研究、样品制备和临床应用均存在一系列障碍。特别是在骨缺损治疗中,外泌体如何通过受体蛋白进入细胞并在细胞内发挥作用,仍存在较多尚未阐明的科学问题。本篇综述将简要介绍骨缺损相关治疗方法及外泌体相关的基本概念,讨论干细胞来源外泌体在骨缺损治疗中的分子机理,并介绍 CRISPR-Cas 基因编辑技术等前沿技术手段在研究骨缺损的外泌体治疗中的作用,最后对本领域的未来趋势进行展望。

Abstract

Bone regeneration is a sophisticated, precisely controlled physiological process. In addition to bone metabolism balance under normal conditions, bone regeneration occurs also in bone repair process following bone damage or diseases. Clinically, treatment of critical bone defects typically requires the use of a series intervention technologies for bone regeneration, including transplantation, administration of growth factors, distraction osteogenesis and others. Exosome is a newly emerging research field, and has been used in many medical indications with notable therapeutic outcomes. However, due to the sophisticated chemical compositions of exosomes, composing of lipid bilayers encapsulating a number of protein and nucleic acid molecules, the mechanism of action studies, manufacturing process and clinical applications are largely impeded. Specifically, in the applications of exosome-mediated therapy for bone defects, many fundamental scientific questions remain to be elucidated, such as how exosomes enter acceptor cells and exert their functions. This review will introduce therapeutic approaches for bone defects and basic concepts of exosomes, discuss the molecular mechanisms of stem cell -derived exosome for treating bone defects, propose the roles of emerging biotechnologies such as CRISPR-Cas genome editing in studying the exosome treatment of bone defects and finally forecast the trend of stem cell-derived exosomes for treating bone defects.

关键词

骨缺损 ; 干细胞 ; 外泌体 ; CRISPR-Cas

Keywords

Bone defects ; Stem cells ; Exosomes ; CRISPR-Cas

1 骨组织的损伤与再生及相关疗法

骨是人体重要的器官,承载着支撑运动,保护脏器等功能。在创伤、感染、肿瘤切除或先天性疾病等情况下,骨组织可能会产生缺损。骨缺损经常伴有软组织的损伤,包括肌肉、肌腱和关节损伤。骨组织天然具有一定的愈合能力,这种愈合是一个高度复杂、受到多种生理途径调控的形成新骨的再生过程,涉及一系列机体细胞和分子的参与[1]。然而,由于骨组织的内在再生能力有其限度,超过其再生限度的大面积骨缺损则需要额外的临床干预。

目前,对于促进骨修复的核心要素包括间充质干细胞 (Mesenchymal Stem Cells,MSCs)、生长因子、骨传导基质以及稳定的生物力学环境等[2]。在骨修复的临床干预过程中,可通过直接进行局部给药满足对生长因子的需求,稳定的生物力学环境可通过患者静养和外部固定设施等实现,因而人们主要着眼于MSCs和骨传导基质的使用。然而,通过自体或异体的骨移植不可避免的面临一系列障碍,如供体来源有限、供体伴随的传染性疾病、对供给处骨骼的损伤、侵入性手术相关的并发症等问题[3];同时,MSCs 移植也存在数量不足、移植后存活率不佳,及预期外的分化等困难[4]。

随着研究的逐步深入,人们发现 MSCs可能主要通过旁分泌作用发挥其治疗作用[5-6]。MSCs的分泌物包括外泌体 (Exosomes)、生长因子、细胞因子、趋化因子、细胞外基质和代谢物等,这些物质在调节组织修复和再生中可能起到了重要的作用[7]。同时,外泌体除本身的生理功能外,还可通过工程化手段装载其他药物进行递送治疗[8]。因此,外泌体配合其他生长因子等成分的无细胞疗法在骨缺损治疗中逐渐受到重视,近年的大量基础研究和临床研究也为安全、可行的临床方案的形成提供了较好的理论支撑。

2 外泌体在骨再生中的应用

外泌体是由磷脂双分子层形成的直径约 40~150 nm 的细胞外囊泡 (Extracellular Vesicles, EVs) [9],携带有蛋白质、脂质、RNA 等成分,可通过参与细胞间通讯对多种生理活动产生广泛的影响[10]。外泌体来源于细胞的内吞途径,通过多泡内体 (Multivesicular Endosomes,MVEs) 释放到胞外[11]。外泌体的形成可基本分为内陷、外泌体形成、融合和分泌四个过程:早期内体由细胞质膜内陷形成,随后内体膜进一步内陷形成腔内小泡 (Intraluminal Vesicles,ILVs),内体本身进一步转化为含有 ILVs 的晚期内体,MVEs 膜与质膜融合后,ILVs 陆续从细胞中释放出来,并成为胞外与其他细胞相互作用的外泌体[11]。外泌体几乎可由所有类型的细胞产生,并广泛存在于血液、唾液、尿液等各种生物液体中。不同的细胞组织起源、生理状态,甚至亲本细胞所处的微环境,都会影响外泌体的丰度、组成和功能特性[10] (见图1)。

值得一提的是,患者与健康人循环外泌体的特征标志物含量不同,可据此反映其病理状态;大量研究表明,外泌体或可作为各种疾病诊断、预后和治疗效果预测的生物标志物[12-13]。同时,小分子、核酸药物或生物活性分子可被整合到外泌体中,然后被转运至靶点发挥治疗效果。因此,外泌体可作为疾病治疗和药物递送的载体[14-15]。外泌体作为运载工具的优势在于能够在脂质双分子层内部或其中同时装载疏水性和亲水性物质,而在外泌体膜的保护下,“货物”也不易在循环过程中降解。更有研究表明,外泌体可穿过生物屏障,进入深层组织[16]。此外,外泌体还能有效促进再生、诱导干细胞分化和引发特殊免疫反应,且具有良好的生物相容性、生物降解性和稳定性,以及较低的免疫原性[10]。

图1 外泌体的表面标志物,内部“货物”及参与的生理功能

外泌体作为细胞间通讯的重要媒介,在骨形成等多种生物过程中发挥着重要作用。MSCs来源的外泌体能够靶向骨组织诱导成骨分化,从而加速骨再生过程[17]。使用不同来源,诸如人脐带MSCs[18]、人诱导多能干细胞[19]、以及骨髓来源干细胞 (Bone Marrow-Derived Stem Cells,BMSCs) [20] 等衍生的外泌体,均能在患病动物治疗过程中显示其刺激新骨生成的能力。然而,目前制备外泌体的 “金标准技术”超速离心[21-22],具有耗时长、通量有限的缺陷,因此,外泌体的大规模临床应用仍存在“标准化制备方案不足”的挑战。

外泌体在应用于骨缺损治疗中的主要形式可基本分为三类:天然外泌体、修饰外泌体、以及装载在生物材料支架中的外泌体。由于未经修饰的天然外泌体存在诸如产量较低、循环过程中不稳定和靶向能力差等局限性,人们开发了各种策略来修饰外泌体并增强其治疗潜力。外泌体修饰的途径主要分为两个方面[23]:通过改变培养条件对供体细胞进行预处理,如缺氧[24-25]、细胞因子[26-27] 处理或化学处理[28-29];也可使用外泌体工程手段,将“货物”包装到外泌体中[30-31],或对外泌体进行表面修饰[32]。通过预处理可以提高外泌体产量和治疗效果,且可以增强外泌体对受体细胞生理反应的调节。人工进行外泌体的特定“货物”包装可以利用外泌体的结构更好地保护其中的有效成分,表面修饰则增强外泌体的靶向能力。此外,外泌体还可以直接装载到生物材料中[33],利用生物材料支架来延长外泌体的存储时间,改变外泌体的释放特性,且可使释出的外泌体优先靶向到病灶位置发挥效应[34]。使用水凝胶,金属材料或生物活性陶瓷等生物相容性良好的材料,还可进一步促进骨愈合[33,35]。

3 外泌体促进骨再生的机制

作为一种细胞间的信息传递载体,外泌体能够通过直接转移其内部“货物”,控制靶细胞中的下游信号转导途径,来促进骨再生过程。通过受体细胞对外泌体的吸收,外泌体膜与受体细胞膜或内体膜融合,其腔内的 miRNA 等“货物”即可释放到胞质溶胶中,结合靶 mRNA 对相关基因的翻译情况进行调控,或直接参与信号通路影响细胞生理活动。其中主要的效应包括促进血管生成,调节免疫反应和破骨细胞活性,招募MSCs并促进其增殖与骨生成 (见图2) [36]。

图2 外泌体促进骨再生的主要机制概览

3.1 促进血管生成

循环系统是激素和生长因子的主要运输管道。骨缺损区域的血管生成,能够为骨缺损区域提供氧气和营养物质,并运走代谢废物,进而影响骨骼的生长和再生[37]。外泌体能够增强局部血管生成[38-40],已有报道证实,外泌体能够通过这种方式来促进骨缺损的修复[41-43]。外泌体的促血管生成效果可能与其内部装载的 RNA[44-45] 或生长因子等[46] 有关。包括 Akt/mTOR在内的多种信号通路的激活在外泌体介导的促血管生成过程中发挥作用[43,47-48]。

3.2 调节免疫反应和破骨细胞活性

由免疫细胞及其分泌物形成的免疫微环境对于骨再生同样必不可少。免疫微环境不仅控制成骨细胞和破骨细胞的活性,还影响着趋化因子、生长因子和炎症因子的分泌,从而影响新骨的形成和现有骨的强度[49-50]。外泌体在复杂的内部环境中对免疫细胞活性的调节至关重要。例如,从健康供体骨髓中提取的 MSCs 产生的外泌体能够抑制促炎因子 TNF-α 和 IL-1β 的分泌,并能增加抗炎因子 TGF-β 的浓度[51]。通过 BMP、Wnt/β-catenin 和 OSM 信号通路的激活,骨免疫环境可被调节,从而有利于 BMSCs 的成骨分化[52]。BMSCs 来源的外泌体还可以促进牙周组织的再生,调节破骨细胞的功能并影响巨噬细胞极化和 TGF-β1 表达,从而抑制牙周炎的发展和牙周组织的免疫损伤[53]。

破骨细胞的活性及其与成骨细胞的相互作用也会影响骨重建过程[54-56]。破骨细胞产生的外泌体,尤其是其内部的 miR-214-3p 对成骨细胞活性的抑制及凋亡的诱导已有广泛报道[57-58]。因此,抑制破骨细胞的分化与活性也能够提高骨修复效率。多种来源的外泌体已被证实具有相关功能,如脂肪间充质干细胞来源的外泌体可以拮抗缺氧和血清剥夺诱导的骨细胞凋亡和骨细胞介导的破骨细胞生成[59]; 前列腺癌细胞系 PC-3 衍生的外泌体通过下调 miR214和阻断NF-κB信号通路来抑制破骨细胞分化[60]; 血管内皮细胞来源的外泌体在体外实验中也能抑制破骨细胞的活性,并能抑制卵巢切除模型小鼠骨质疏松症的发生发展,在此过程中,外泌体中的miR155可能发挥重要作用[61]。

3.3 招募MSCs并促进其增殖与骨生成

进入受体细胞内的外泌体能够激活各种信号级联反应,通过促进成骨细胞增殖和分化以及将内源性MSCs募集到骨缺损部位导致骨再生。人脂肪干细胞来源的外泌体能够显著增强骨再生,且已证实其骨诱导作用和促进间充质干细胞迁移的能力[62]。外泌体可在体外和体内诱导间充质干细胞的分化[63]。矿化成骨细胞来源的外泌体可促进骨髓基质细胞向成骨细胞的分化,并且倾向于通过抑制 Axin1 表达和增加 β-catenin 表达来激活 Wnt信号通路[64]。许多外泌体miRNA如miRNA-27a、miRNA207a和 miRNA-196a已被证明在成骨分化过程中起关键作用[65]。

4 CRISPR-Cas 基因编辑技术在研究外泌体介导的骨再生中的应用

近年来,一些前沿的生物技术也被应用于骨组织再生中,如 RNAi技术[66-68] 和 CRISPR-Cas基因编辑技术[69]。值得关注的是,CRISPR-Cas 技术在解析外泌体介导的骨缺损修复的分子机理中也能起到举足轻重的作用。目前,广泛使用的 CRISPR系统是由 Cas 核酸酶和向导 RNA (guide RNA,gRNA) 组成[70]。gRNA 可结合 Cas 核酸酶并将其靶向至基因组中与 gRNA 匹配的特异性位点。Cas 核酸酶切割产生的双链 DNA 断裂,可被宿主细胞的非同源末端连接或同源重组修复,从而可以引入突变、使基因失活或插入基因片段。

基于慢病毒 (Lentivirus) 或腺病毒相关病毒 (Adeno-Associated Virus,AAV) 载体的 CRISPRCas9全基因组筛选技术也已经被应用于生物学研究的各个方面,包括鉴定细胞生长及增殖必需基因[71-72]、癌症药物相关基因[73]、在体内环境鉴定癌症发生及迁移相关基因[74] 等。同时,CRISPR筛选技术也被迅速应用于病原微生物领域,在阐明病原-宿主相互作用方面取得了一系列突破[75]。CRISPR筛选的流程包括构建质粒文库、包装慢病毒文库、感染宿主细胞、进行表型筛选、收集富集细胞并提取基因组 DNA、扩增 sgRNA 片段、二代测序分析及 sgRNA富集分析、构建单基因敲除细胞及表型验证等步骤(见图3)。

本实验室利用全基因组 CRISPR筛选技术对骨细胞吸收骨细胞分泌的外泌体进行了初步研究。我们首先采用工程化的骨细胞MLO-Y4制备了包含有 GFP的骨细胞来源外泌体,随后在骨细胞 MC3T3-E1中构建了CRISPR全基因组敲除文库;随后,通过GFP外泌体感染MC3T3-E1细胞文库,并流式分选GFP阴性细胞,以获得促进外泌体吸收的关键基因信息(关键蛋白敲除,则外泌体吸收降低)。结果表明,与外泌体吸收相关的基因广泛存在,并包含转录因子、microRNA 等多种类型基因 (见表1)。虽然此结果仍待进一步验证,但本研究为解析外泌体治疗骨缺损的分子机理提供了非常有益的思路。

图3 CRISPR功能基因组筛选的流程示意图

表1 全基因组CRISPR筛选鉴定的促外泌体吸收相关候选基因

5 领域局限

尽管外泌体在骨再生中的应用前景广阔,但使用外泌体进行骨再生尚存在一系列亟待解决的问题。缺乏外泌体的标准分离纯化策略是临床应用的一大瓶颈[76]。理想的分离技术应具有操作简便、成本低、产率高、耗时少、通量大、特异性与可重复性良好等特点。然而,目前已有的方法尚不能达成以上所有的理想标准。为满足临床转化的需求,也需要更高质量和数量外泌体的生产。

外泌体可以刺激受体细胞内的信号传导或传递其成分以刺激成骨细胞的增殖和分化。然而,天然外泌体对骨再生的疗效有限,且可被网状内皮系统捕获或被单核吞噬细胞系统清除,这可能会阻碍其在损伤部位的积累,从而无法发挥理想的促进愈合效果[77]。并且,外泌体的天然靶向特性有限,不足以准确地作用于特定的受体细胞或组织。对外泌体进行工程化操作可优化其靶向能力,或直接装载其他药物增强疗效。对外泌体供体细胞的预处理可通过调节外泌体的分泌和含量来促进外泌体的抗炎和成骨潜能。由于外泌体的性质与功能容易受到供体细胞种类和状态等条件的影响,不同预处理的最佳时间和强度仍需要进一步探索[23]。

此外,外泌体的额外载药也往往表现出效率不高、均一性差的问题[78],原因可能在于外泌体在形成过程中含有母细胞的部分内容物,导致外源性药物装载到腔内的空间有限。生物材料的出现为基于外泌体的治疗提供了新的选择,将外泌体包裹到生物材料支架中可以优化它们在骨再生中的应用,但仍存在一些局限性。例如,难以通过支架维持外泌体释放;虽然实现了缓慢释放,但是没有稳定释放外泌体的策略;最适合骨再生的支架材质选择、装载效率与释放速率也有待评估。因此,需要进行进一步的研究来解决这些问题。针对不同需要,最适宜的外泌体工程化处理也可能不同,这无疑大大增加了临床应用的研发成本。

外泌体为骨缺损治疗提供了新的方向,但外泌体治疗骨缺损的再生功效仍处于起步阶段。目前的研究大多仅限于小动物模型,而包括人类在内的大型动物的骨缺损治疗将更加复杂,这也会成为外泌体疗法推广过程中的挑战。努力推动大型动物模型上的研究,并最终进行临床试验,也将有助于推进外泌体在骨再生领域的发展。

6 结论与展望

外泌体作为一种无细胞疗法,在骨缺损治疗上能克服传统疗法及细胞治疗的一系列问题,且具备装载“货物”分子、与凝胶或支架材料组合等“升级换代”的潜力,因此是骨缺损治疗中重要的前沿研究方向。虽然目前尚未有较详细的临床试验来探索MSCs外泌体治疗骨缺损的临床效果,但随着基础研究和临床前研究的不断完善,及更多科研工作者 (特别是交叉学科的学者) 带来的新思路,相信临床研究所面临的难点将被逐一攻克,从而真正惠及有临床需要的患者人群。

参考文献

[1] DIMITRIOU R,JONES E,MCGONAGLE D,et al.Bone regeneration:current concepts and future directions[J].BMC Med,2011,9:66.

[2] GIANNOUDIS P V,EINHORN T A,MARSH D.Fracture healing:the diamond concept[J].Injury,2007,38(Suppl 4):S3-S6.

[3] SANZ-SANCHEZ I,SANZ-MARTIN I,ORTIZ-VIGON A,et al.Complications in bone-grafting procedures:classification and management[J].Periodontol,2000,2022,88(1):86-102.

[4] ZHOU T,YUAN Z,WENG J,et al.Challenges and advances in clinical applications of mesenchymal stromal cells[J].J Hematol Oncol,2021,14(1):24.

[5] PARK W S,AHN S Y,SUNG S I,et al.Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders[J].Pediatr Res,2018,83(1-2):214-222.

[6] JOO H S,SUH J H,LEE H J,et al.Current knowledge and future perspectives on mesenchymal stem cellderived exosomes as a new therapeutic agent[J].Int J Mol Sci,2020,21(3):727.

[7] KONALA V B,MAMIDI M K,BHONDE R,et al.The current landscape of the mesenchymal stromal cell secretome:a new paradigm for cell-free regeneration[J].Cytotherapy,2016,18(1):13-24.

[8] LU Y,MAI Z,CUI L,et al.Engineering exosomes and biomaterial-assisted exosomes as therapeutic carriers for bone regeneration[J].Stem Cell Res Ther,2023,14(1):55.

[9] WANG D,CAO H,HUA W,et al.Mesenchymal stem cell-derived extracellular vesicles for bone defect repair [J].Membranes(Basel),2022,12(7).

[10] KALLURI R,LEBLEU V S.The biology,function,and biomedical applications of exosomes[J].Science,2020,367(6478):eaau6977.

[11] VAN NIEL G,D'ANGELO G,RAPOSO G.Shedding light on the cell biology of extracellular vesicles[J].Nat Rev Mol Cell Biol,2018,19(4):213-228.

[12] HOSHINO A,COSTA-SILVA B,SHEN T L,et al.Tumour exosome integrins determine organotropic metas‐tasis[J].Nature,2015,527(7578):329-335.

[13] FAIS S,O'DRISCOLL L,BORRAS F E,et al.Evidencebased clinical use of nanoscale extracellular vesicles in nanomedicine[J].ACS Nano,2016,10(4):3886-3899.

[14] LIN R,ZHANG T,GAO J.Apoptotic vesicles of MSCs:the natural therapeutic agents and bio-vehicles for targeting drug delivery[J].Small,2023:e2301671.

[15] YAO C,WANG C.Platelet-derived extracellular vesicles for drug delivery[J].Biomater Sci,2023,11(17):5758-5768.

[16] STERZENBACH U,PUTZ U,LOW L H,et al.Engineered exosomes as vehicles for biologically active proteins[J].Mol Ther,2017,25(6):1269-1278.

[17] XIE Y,CHEN Y,ZHANG L,et al.The roles of bonederived exosomes and exosomal microRNAs in regulating bone remodelling[J].J Cell Mol Med,2017,21(5):1033-1041.

[18] YANG B C,KUANG M J,KANG J Y,et al.Human umbilical cord mesenchymal stem cell-derived exosomes act via the miR-1263/Mob1/Hippo signaling pathway to prevent apoptosis in disuse osteoporosis[J].Biochem Biophys Res Commun,2020,524(4):883-889.

[19] QI X,ZHANG J,YUAN H,et al.Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats[J].Int J Biol Sci,2016,12(7):836-849.

[20] LIAO W,NING Y,XU H J,et al.BMSC-derived exosomes carrying microRNA-122-5p promote proliferation of osteoblasts in osteonecrosis of the femoral head[J].Clin Sci(Lond),2019,133(18):1955-1975.

[21] LANGEVIN S M,KUHNELL D,ORR-ASMAN M A,et al.Balancing yield,purity and practicality:a modified differential ultracentrifugation protocol for efficient isolation of small extracellular vesicles from human serum[J].RNA Biol,2019,16(1):5-12.

[22] AN M,WU J,ZHU J,et al.Comparison of an optimized ultracentrifugation method versus size-exclusion chromatog‐ raphy for isolation of exosomes from human serum[J].J Proteome Res,2018,17(10):3599-3605.

[23] CHEN S,SUN F,QIAN H,et al.Preconditioning and engineering strategies for improving the efficacy of mesenchymal stem cell-derived exosomes in cell-free therapy[J].Stem Cells Int,2022,2022:1779346.

[24] SAPAROV A,OGAY V,NURGOZHIN T,et al.Preconditioning of human mesenchymal stem cells to enhance their regulation of the immune response[J].Stem Cells Int,2016,2016:3924858.

[25] GORGUN C,CERESA D,LESAGE R,et al.Dissecting the effects of preconditioning with inflammatory cytokines and hypoxia on the angiogenic potential of mesenchymal stromal cell(MSC)-derived soluble proteins and extracellular vesicles(EVs)[J].Biomaterials,2021,269:120633.

[26] HERRMANN J L,WANG Y,ABARBANELL A M,et al.Preconditioning mesenchymal stem cells with transforming growth factor-alpha improves mesenchymal stem cellmediated cardioprotection[J].Shock,2010,33(1):24-30.

[27] HAHN J Y,CHO H J,KANG H J,et al.Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation,cytoprotective effect on cardiomyocytes,and therapeutic efficacy for myocardial infarction[J].J Am Coll Cardiol,2008,51(9):933-943.

[28] MIRABEL C,PUENTE-MASSAGUER E,DEL MAZOBARBARA A,et al.Stability enhancement of clinical grade multipotent mesenchymal stromal cell-based products[J].J Transl Med,2018,16(1):291.

[29] JING H,ZHANG X,LUO K,et al.miR-381-abundant small extracellular vesicles derived from kartogenin-pre‐conditioned mesenchymal stem cells promote chondro‐ genesis of MSCs by targeting TAOK1[J].Biomaterials,2020,231:119682.

[30] HANEY M J,KLYACHKO N L,ZHAO Y,et al.Exosomes as drug delivery vehicles for Parkinson's disease therapy[J].J Control Release,2015,207:18-30.

[31] PIFFOUX M,VOLATRON J,CHERUKULA K,et al.Engineering and loading therapeutic extracellular vesicles for clinical translation:a data reporting frame for comparability[J].Adv Drug Deliv Rev,2021,178:113972.

[32] YANG X,XIE B,PENG H,et al.Eradicating intracellular MRSA via targeted delivery of lysostaphin and vancomycin with mannose-modified exosomes[J].J Control Release,2021,329:454-467.

[33] ZHANG M,LI Y,FENG T,et al.Bone engineering scaffolds with exosomes:a promising strategy for bone defects repair[J].Front Bioeng Biotechnol,2022,10:920378.

[34] HUANG C C,KANG M,SHIRAZI S,et al.3D Encapsulation and tethering of functionally engineered extracellular vesicles to hydrogels[J].Acta Biomater,2021,126:199-210.

[35] KANG Y,XU C,MENG L,et al.Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic,angiogenic and anti-inflammatory properties for accelerated bone regeneration[J].Bioact Mater,2022,18:26-41.

[36] GIRÓN J,MAURMANN N,PRANKE P.The role of stem cell-derived exosomes in the repair of cutaneous and bone tissue[J].J Cell Biochem,2022,123(2):183-201.

[37] FILIPOWSKA J,TOMASZEWSKI K A,NIEDZ‐ WIEDZKI L,et al.The role of vasculature in bone devel‐ opment,regeneration and proper systemic functioning[J].Angiogenesis,2017,20(3):291-302.

[38] QIU S,XIE L,LU C,et al.Gastric cancer-derived exosomal miR-519a-3p promotes liver metastasis by inducing intrahepatic M2-like macrophage-mediated angiogenesis[J].J Exp Clin Cancer Res,2022,41(1):296.

[39] HU N,CAI Z,JIANG X,et al.Hypoxia-pretreated ADSC-derived exosome-embedded hydrogels promote angiogenesis and accelerate diabetic wound healing[J].Acta Biomater,2023,157:175-186.

[40] SHI A,LI J,QIU X,et al.TGF-beta loaded exosome enhances ischemic wound healing in vitro and in vivo[J].Theranostics,2021,11(13):6616-6631.

[41] LIU X,LI Q,NIU X,et al.Exosomes secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells prevent osteonecrosis of the femoral head by promoting angiogenesis[J].Int J Biol Sci,2017,13(2):232-244.

[42] ZHANG Y,HAO Z,WANG P,et al.Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1alpha-mediated promotion of angiogenesis in a rat model of stabilized fracture[J].Cell Prolif,2019,52(2):e12570.

[43] LIANG B,LIANG J M,DING J N,et al.Dimethyloxal‐ oylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR path‐ way[J].Stem Cell Res Ther,2019,10(1):335.

[44] HE L,ZHU W,CHEN Q,et al.Ovarian cancer cellsecreted exosomal miR-205 promotes metastasis by inducing angiogenesis[J].Theranostics,2019,9(26):8206-8220.

[45] BEHERA J,KUMAR A,VOOR M J,et al.Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Angpt1/Tie2-NO signaling in CBSheterozygous mice[J].Theranostics,2021,11(16):7715-7734.

[46] ZHANG W,ZHANG X,HUANG S,et al.FOXM1D potentiates PKM2-mediated tumor glycolysis and angio‐ genesis[J].Mol Oncol,2021,15(5):1466-1485.

[47] SU Y,GAO Q,DENG R,et al.Aptamer engineering exosomes loaded on biomimetic periosteum to promote angiogenesis and bone regeneration by targeting injured nerves via JNK3 MAPK pathway[J].Mater Today Bio,2022,16:100434.

[48] WU D,CHANG X,TIAN J,et al.Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field:release of exosomal miR-1260a improves osteogenesis and angiogenesis[J].J Nanobio‐ technology,2021,19(1):209.

[49] LIU H,LI D,ZHANG Y,et al.Inflammation,mesen‐ chymal stem cells and bone regeneration[J].Histochem Cell Biol,2018,149(4):393-404.

[50] SRIVASTAVA R K,DAR H Y,MISHRA P K.Immunopo‐ rosis:immunology of osteoporosis-role of t cells[J].Front Immunol,2018,9:657.

[51] CHEN W,HUANG Y,HAN J,et al.Immunomodulatory effects of mesenchymal stromal cells-derived exosome[J].Immunol Res,2016,64(4):831-840.

[52] CHEN Z,CHEN L,LIU R,et al.The osteoimmunomodu‐ latory property of a barrier collagen membrane and its manipulation via coating nanometer-sized bioactive glass to improve guided bone regeneration[J].Biomater Sci,2018,6(5):1007-1019.

[53] LIU L,GUO S,SHI W,et al.Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote periodontal regeneration[J].Tissue Eng Part A,2021,27(13-14):962-976.

[54] KIM B J,KOH J M.Coupling factors involved in preserving bone balance[J].Cell Mol Life Sci,2019,76(7):1243-1253.

[55] MATSUO K,IRIE N.Osteoclast-osteoblast communica‐tion[J].Arch Biochem Biophys,2008,473(2):201-209.

[56] FAN L,GUAN P,XIAO C,et al.Exosome-functionalized polyetheretherketone-based implant with immunomodula‐ tory property for enhancing osseointegration[J].Bioact Mater,2021,6(9):2754-2766.

[57] LI D,LIU J,GUO B,et al.Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation[J].Nat Commun,2016,7:10872.

[58] SUN W,ZHAO C,LI Y,et al.Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity[J].Cell Discov,2016,2:16015.

[59] REN L,SONG Z J,CAI Q W,et al.Adipose mesenchymal stem cell-derived exosomes ameliorate hypoxia/serum deprivation-induced osteocyte apoptosis and osteocytemediated osteoclastogenesis in vitro[J].Biochem Biophys Res Commun,2019,508(1):138-144.

[60] DUAN Y,TAN Z,YANG M,et al.PC-3-derived exo‐somes inhibit osteoclast differentiation by downregulating miR-214 and blocking NF-kappaB signaling pathway[J].Biomed Res Int,2019,2019:8650846.

[61] SONG H,LI X,ZHAO Z,et al.Reversal of osteoporotic activity by endothelial cell-secreted bone targeting and biocompatible exosomes[J].Nano Lett,2019,19(5):3040-3048.

[62] LI W,LIU Y,ZHANG P,et al.Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration[J].ACS Appl Mater Interfaces,2018,10(6):5240-5254.

[63] NARAYANAN R,HUANG C,CRAVINDRAN S.Hijacking the cellular mail:exosome mediated differentia‐tion of mesenchymal stem cells[J].Stem Cells Int,2016,2016:3808674.

[64] CUI Y,LUAN J,LI H,et al.Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression[J].FEBS Lett,2016,590(1):185-192.

[65] QIN Y,WANG L,GAO Z,et al.Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo[J].Sci Rep,2016,6:21961.

[66] LAIRD N Z,ACRI T M,TINGLE KSALEM A K.Geneand RNAi-activated scaffolds for bone tissue engineering:current progress and future directions[J].Adv Drug Deliv Rev,2021,174:613-627.

[67] XU J F,YANG G H,PAN X H,et al.Altered microRNA expression profile in exosomes during osteogenic differ‐ entiation of human bone marrow-derived mesenchymal stem cells[J].PLoS One,2014,9(12):e114627.

[68] YU T,WANG H,ZHANG Y,et al.The delivery of RNAinterference therapies based on engineered hydrogels for bone tissue regeneration[J].Front Bioeng Biotechnol,2020,8:445.

[69] LI C,DU Y,ZHANG T,et al."Genetic scissors" CRISPR/Cas9 genome editing cutting-edge biocarrier technology for bone and cartilage repair[J].Bioact Mater,2023,22:254-273.

[70] JINEK M,CHYLINSKI K,FONFARA I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821.

[71] HART T,CHANDRASHEKHAR M,AREGGER M,et al.High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities[J].Cell,2015,163(6):1515-1526.

[72] WANG T,BIRSOY K,HUGHES N W,et al.Identification and characterization of essential genes in the human genome[J].Science,2015,350(6264):1096-1101.

[73] SHI J,WANG E,MILAZZO J P,et al.Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains [J].Nat Biotechnol,2015,33(6):661-667.

[74] CHEN S,SANJANA N E,ZHENG K,et al.Genomewide CRISPR screen in a mouse model of tumor growth and metastasis[J].Cell,2015,160(6):1246-1260.

[75] MARCEAU C D,PUSCHNIK A S,MAJZOUB K,et al.Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens[J].Nature,2016,535(7610):159-163.

[76] MENG W,HE C,HAO Y,et al.Prospects and challenges of extracellular vesicle-based drug delivery system:considering cell source[J].Drug Deliv,2020,27(1):585-598.

[77] IMAI T,TAKAHASHI Y,NISHIKAWA M,et al.Macro‐ phage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice[J].J Extracell Vesicles,2015,4:26238.

[78] VADER P,MOL E A,PASTERKAMP G,et al.Extracel‐lular vesicles for drug delivery[J].Adv Drug Deliv Rev,2016,106(Pt A):148-156.



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3