Python机器学习库sklearn几种回归算法建模及分析(实验)

您所在的位置:网站首页 常用的可视化模型有哪些 Python机器学习库sklearn几种回归算法建模及分析(实验)

Python机器学习库sklearn几种回归算法建模及分析(实验)

2023-09-08 09:28| 来源: 网络整理| 查看: 265

最简单的回归模型就是线性回归

数据导入与可视化分析

from IPython.display import Image %matplotlib inline # Added version check for recent scikit-learn 0.18 checks from distutils.version import LooseVersion as Version from sklearn import __version__ as sklearn_version #原数据网址变了,新换的数据地址需要处理http://lib.stat.cmu.edu/datasets/boston import pandas as pd import numpy as np #df = pd.read_csv('http://lib.stat.cmu.edu/datasets/boston',header=19,sep='\s{1,3}') #df.head() dfnp=np.genfromtxt('boston.txt') df=pd.DataFrame(dfnp,columns = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']) df.to_csv('boston.csv') df.head()

import matplotlib.pyplot as plt import seaborn as sns sns.set(style='whitegrid', context='notebook') #style控制默认样式,context控制着默认的画幅大小 cols = ['LSTAT', 'INDUS', 'NOX', 'RM', 'MEDV'] sns.pairplot(df[cols], size=2.5) plt.tight_layout() # plt.savefig('./figures/scatter.png', dpi=300) plt.show()

import numpy as np cm = np.corrcoef(df[cols].values.T) #corrcoef方法按行计算皮尔逊相关系数,cm是对称矩阵 #使用np.corrcoef(a)可计算行与行之间的相关系数,np.corrcoef(a,rowvar=0)用于计算各列之间的相关系数,输出为相关系数矩阵。 sns.set(font_scale=1.5) #font_scale设置字体大小 hm = sns.heatmap(cm,cbar=True,annot=True,square=True,fmt='.2f',annot_kws={'size': 15},yticklabels=cols,xticklabels=cols) # plt.tight_layout() # plt.savefig('./figures/corr_mat.png', dpi=300) plt.show()

sns.reset_orig() #将参数还原为seaborn作图前的原始值 %matplotlib inline

线性回归的最小二乘法

#编制最小二乘法类 class LinearRegressionGD(object): def __init__(self, eta=0.001, n_iter=20): self.eta = eta self.n_iter = n_iter def fit(self, X, y): #X是列向量,y是行向量 self.w_ = np.zeros(1 + X.shape[1]) #初始化(1,2)全0的行向量,存迭代过程拟合直线的两个系数 self.cost_ = [] for i in range(self.n_iter): output = self.net_input(X) errors = (y - output) #与y同维度的行向量,errors是误差项 self.w_[1:] += self.eta * X.T.dot(errors) #拟合直线的一次项系数 self.w_[0] += self.eta * errors.sum() #拟合直线的常数项 cost = (errors**2).sum() / 2.0 #残差的平方和一半——目标函数 self.cost_.append(cost) return self def net_input(self, X): return np.dot(X, self.w_[1:]) + self.w_[0] def predict(self, X): return self.net_input(X) #cost_是每次迭代的残差平方和一半的统计列表,w_包含每次迭代直线的两个参数,errors是每次迭代的残差 X = df[['RM']].values #X是(*,1)维列向量 y = df['MEDV'].values #y是(*, )行向量 from sklearn.preprocessing import StandardScaler sc_x = StandardScaler() sc_y = StandardScaler() X_std = sc_x.fit_transform(X) #fit_transform方法可以拆分成StanderdScalar里的fit和transform两步,这里为了区别LinearRegressionGD类将两步合并 y_std = sc_y.fit_transform(y[:, np.newaxis]).flatten() #y[:, np.newaxis]作用等同于y[np.newaxis].T,也就是df[['MEDV']].values;flatten方法的作用是变回成1*n的向量 #fit_transform方法是对“列向量”直接规范化 lr = LinearRegressionGD() lr.fit(X_std, y_std) #这里的fit是LinearRegressionGD类的,注意区分sklearn里不同类的fit方法使用环境 #Output: plt.plot(range(1, lr.n_iter+1), lr.cost_) plt.ylabel('SSE') plt.xlabel('Epoch') plt.tight_layout() # plt.savefig('./figures/cost.png', dpi=300) plt.show()

def lin_regplot(X, y, model): plt.scatter(X, y, c='lightblue') plt.plot(X, model.predict(X), color='red', linewidth=2) return lin_regplot(X_std, y_std, lr) plt.xlabel('Average number of rooms [RM] (standardized)') plt.ylabel('Price in $1000\'s [MEDV] (standardized)') plt.tight_layout() # plt.savefig('./figures/gradient_fit.png', dpi=300) plt.show()

print('Slope: %.3f' % lr.w_[1]) #ax+b里的a print('Intercept: %.3f' % lr.w_[0]) #ax+b里的b #Output: #Slope: 0.695 #Intercept: -0.000 num_rooms_std = sc_x.transform(np.array([[5.0]])) #与建模时数据进行同样的标准化转化 price_std = lr.predict(num_rooms_std) #a*num_rooms_std+b print("Price in $1000's: %.3f" % sc_y.inverse_transform(price_std)) #Output: #Price in $1000's: 10.840 #用sklearn完成回归并查看系数,与上面自己编写的LinearRegressionGD对比 from sklearn.linear_model import LinearRegression slr = LinearRegression() slr.fit(X, y) y_pred = slr.predict(X) print('Slope: %.3f' % slr.coef_[0]) print('Intercept: %.3f' % slr.intercept_) #Output: #Slope: 9.102 #Intercept: -34.671 lin_regplot(X, y, slr) plt.xlabel('Average number of rooms [RM]') plt.ylabel('Price in $1000\'s [MEDV]') plt.tight_layout() # plt.savefig('./figures/scikit_lr_fit.png', dpi=300) plt.show()

下面利用法方程求解拟合直线系数

# adding a column vector of "ones" Xb = np.hstack((np.ones((X.shape[0], 1)), X)) #在X前加一列1 w = np.zeros(X.shape[1]) z = np.linalg.inv(np.dot(Xb.T, Xb)) #np.linalg.inv方法利用线性代数包求逆,np.dot(Xb.T, Xb)是2*2方阵 w = np.dot(z, np.dot(Xb.T, y)) print('Slope: %.3f' % w[1]) print('Intercept: %.3f' % w[0]) #Output: #Slope: 9.102 #Intercept: -34.671 #从上面结果可见:Logistic Regression求拟合直线的原理就是利用法方程

使用sklearn的RANSAC提高鲁棒性

去除噪声点,利用完全数据的有效内点子集做回归a subset of inliers(对应outliers是离群点)

from sklearn.linear_model import RANSACRegressor #http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html#sklearn.linear_model.RANSACRegressor #RANSACRegressor是从样本总体中随机取无噪声子集,回归拟合直线 if Version(sklearn_version) < '0.18': ransac = RANSACRegressor(LinearRegression(), max_trials=100, min_samples=50, residual_metric=lambda x: np.sum(np.abs(x), axis=1), residual_threshold=5.0, random_state=0) else: ransac = RANSACRegressor(LinearRegression(), max_trials=100, min_samples=50, loss='absolute_loss', residual_threshold=5.0, random_state=0) #base_estimator基本估计器对象默认为LR,max_trials随机样本子集选择的最大迭代次数, #min_samples最少需要取样的点数,loss是样本损失判定准则,residual_threshold是检测离群点的样本损失阈值 ransac.fit(X, y) inlier_mask = ransac.inlier_mask_ #将ransac对象的inliers标注为True outlier_mask = np.logical_not(inlier_mask) #取非,numpy库里避免python本身含有的not重载 line_X = np.arange(3, 10, 1) line_y_ransac = ransac.predict(line_X[:, np.newaxis]) #构造出的验证ransac预测点 plt.scatter(X[inlier_mask], y[inlier_mask], c='blue', marker='o', label='Inliers') plt.scatter(X[outlier_mask], y[outlier_mask], c='lightgreen', marker='s', label='Outliers') plt.plot(line_X, line_y_ransac, color='red') #构造出的预测点做的回归线 plt.plot(X[inlier_mask],ransac.predict(X[inlier_mask]),color='m') #用于建模的inliers点做的回归线 plt.xlabel('Average number of rooms [RM]') plt.ylabel('Price in $1000\'s [MEDV]') plt.legend(loc='upper left') plt.tight_layout() # plt.savefig('./figures/ransac_fit.png', dpi=300) plt.show()

print('Slope: %.3f' % ransac.estimator_.coef_[0]) print('Intercept: %.3f' % ransac.estimator_.intercept_) #Output: #Slope: 9.621 #Intercept: -37.137 评估回归模型的性能 if Version(sklearn_version) < '0.18': from sklearn.cross_validation import train_test_split else: from sklearn.model_selection import train_test_split X = df.iloc[:, :-1].values #除去最后一列,其余都作为特征考虑范围 y = df['MEDV'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) slr = LinearRegression() slr.fit(X_train, y_train) y_train_pred = slr.predict(X_train) y_test_pred = slr.predict(X_test) plt.scatter(y_train_pred, y_train_pred - y_train, c='blue', marker='o', label='Training data') plt.scatter(y_test_pred, y_test_pred - y_test, c='lightgreen', marker='s', label='Test data') #预测值与偏差的关系 plt.xlabel('Predicted values') plt.ylabel('Residuals') plt.legend(loc='upper left') plt.hlines(y=0, xmin=-10, xmax=50, lw=2, color='red') plt.xlim([-10, 50]) plt.tight_layout() # plt.savefig('./figures/slr_residuals.png', dpi=300) plt.show()

from sklearn.metrics import r2_score from sklearn.metrics import mean_squared_error #均方误差回归损失 #http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html#sklearn.metrics.mean_squared_error print('MSE train: %.3f, test: %.3f' % (mean_squared_error(y_train, y_train_pred),mean_squared_error(y_test, y_test_pred))) print('R^2 train: %.3f, test: %.3f' % (r2_score(y_train, y_train_pred),r2_score(y_test, y_test_pred))) #Output: #MSE train: 19.958, test: 27.196 #R^2 train: 0.765, test: 0.673 添加正则化项 from sklearn.linear_model import Lasso #http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso lasso = Lasso(alpha=0.1) #L1正则化系数 lasso.fit(X_train, y_train) y_train_pred = lasso.predict(X_train) y_test_pred = lasso.predict(X_test) print(lasso.coef_) print('MSE train: %.3f, test: %.3f' % (mean_squared_error(y_train, y_train_pred),mean_squared_error(y_test, y_test_pred))) print('R^2 train: %.3f, test: %.3f' % (r2_score(y_train, y_train_pred),r2_score(y_test, y_test_pred))) #Output: #[-0.11311792 0.04725111 -0.03992527 0.96478874 -0. 3.72289616 # -0.02143106 -1.23370405 0.20469 -0.0129439 -0.85269025 0.00795847 # -0.52392362] #MSE train: 20.926, test: 28.876 #R^2 train: 0.753, test: 0.653 多项式回归与曲线拟合 X = np.array([258.0, 270.0, 294.0, 320.0, 342.0, 368.0, 396.0, 446.0, 480.0, 586.0])[:, np.newaxis] y = np.array([236.4, 234.4, 252.8, 298.6, 314.2, 342.2, 360.8, 368.0, 391.2, 390.8]) from sklearn.preprocessing import PolynomialFeatures #生成多项式特征,不是直接用多项式模型拟合 #http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.PolynomialFeatures lr = LinearRegression() pr = LinearRegression() quadratic = PolynomialFeatures(degree=2) #degress设置多项式拟合中多项式的最高次数 X_quad = quadratic.fit_transform(X) #X列向量,fit_transform是对X按列求[1, X, X^2],即构造二次项数据 #For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2]. # fit linear features lr.fit(X, y) X_fit = np.arange(250, 600, 10)[:, np.newaxis] #X_fit是构造的预测数据,X是训练数据 y_lin_fit = lr.predict(X_fit) #利用线性回归对构造的X_fit数据预测 # fit quadratic features pr.fit(X_quad, y) #X_quad是训练数据,使用它进行建模得多项式系数 y_quad_fit = pr.predict(quadratic.fit_transform(X_fit)) #利用二次多项式对构造的X_fit数据预测 # plot results plt.scatter(X, y, label='training points') plt.plot(X_fit, y_lin_fit, label='linear fit', linestyle='--') plt.plot(X_fit, y_quad_fit, label='quadratic fit') plt.legend(loc='upper left') plt.tight_layout() # plt.savefig('./figures/poly_example.png', dpi=300) plt.show()

#验证pr.fit(X_quad, y)可以借助LinearRegression类中的判定边界构造部分求多项式系数 pr.fit(X_quad, y) pr.coef_ #Output: #array([ 0.00000000e+00, 2.39893018e+00, -2.25020109e-03]) y_lin_pred = lr.predict(X) #用训练数据集训练的线性模型,对训练数据集进行线性预测(因为线性模型建模时,就不是100%学习到了精确模型) y_quad_pred = pr.predict(X_quad) print('Training MSE linear: %.3f, quadratic: %.3f' % (mean_squared_error(y, y_lin_pred),mean_squared_error(y, y_quad_pred))) print('Training R^2 linear: %.3f, quadratic: %.3f' % (r2_score(y, y_lin_pred),r2_score(y, y_quad_pred))) #Output: #Training MSE linear: 569.780, quadratic: 61.330 #Training R^2 linear: 0.832, quadratic: 0.982 房价数据集的非线性拟合 X = df[['LSTAT']].values y = df['MEDV'].values regr = LinearRegression() # create quadratic features quadratic = PolynomialFeatures(degree=2) cubic = PolynomialFeatures(degree=3) X_quad = quadratic.fit_transform(X) X_cubic = cubic.fit_transform(X) # fit features X_fit = np.arange(X.min(), X.max(), 1)[:, np.newaxis] regr = regr.fit(X, y) #X,y训练数据集建模;X_fit测试数据集预测;对训练数据集测试得分(因为有时根本不知道测试数据集对应的真实y值) y_lin_fit = regr.predict(X_fit) linear_r2 = r2_score(y, regr.predict(X)) regr = regr.fit(X_quad, y) y_quad_fit = regr.predict(quadratic.fit_transform(X_fit)) quadratic_r2 = r2_score(y, regr.predict(X_quad)) regr = regr.fit(X_cubic, y) y_cubic_fit = regr.predict(cubic.fit_transform(X_fit)) cubic_r2 = r2_score(y, regr.predict(X_cubic)) # plot results plt.scatter(X, y, label='training points', color='lightgray') plt.plot(X_fit, y_lin_fit, label='linear (d=1), $R^2=%.2f$' % linear_r2, color='blue', lw=2, linestyle=':') plt.plot(X_fit, y_quad_fit, label='quadratic (d=2), $R^2=%.2f$' % quadratic_r2, color='red', lw=2, linestyle='-') plt.plot(X_fit, y_cubic_fit, label='cubic (d=3), $R^2=%.2f$' % cubic_r2, color='green', lw=2, linestyle='--') plt.xlabel('% lower status of the population [LSTAT]') plt.ylabel('Price in $1000\'s [MEDV]') plt.legend(loc='upper right') plt.tight_layout() # plt.savefig('./figures/polyhouse_example.png', dpi=300) plt.show()

使用基于树的算法进行回归:回归树

import numpy from sklearn.tree import DecisionTreeRegressor #http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor X = df[['LSTAT']].values y = df['MEDV'].values tree = DecisionTreeRegressor(max_depth=3) #max_depth设置树深 tree.fit(X, y) #参考官网attributes部分了解建模后得到的各种属性:树,使用的特征及特征重要性 sort_idx = X.flatten().argsort() #X中最小元素到最大元素的索引构成的向量 lin_regplot(X[sort_idx], y[sort_idx], tree) plt.xlabel('% lower status of the population [LSTAT]') plt.ylabel('Price in $1000\'s [MEDV]') # plt.savefig('./figures/tree_regression.png', dpi=300) plt.show() #水平红线表示c值,竖直红线表示特征列选择的切分点

随机森林回归

X = df.iloc[:, :-1].values #13个特征列 y = df['MEDV'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=1) from sklearn.ensemble import RandomForestRegressor forest = RandomForestRegressor(n_estimators=1000, criterion='mse', random_state=1, n_jobs=-1) forest.fit(X_train, y_train) y_train_pred = forest.predict(X_train) y_test_pred = forest.predict(X_test) print('MSE train: %.3f, test: %.3f' % (mean_squared_error(y_train, y_train_pred),mean_squared_error(y_test, y_test_pred))) print('R^2 train: %.3f, test: %.3f' % (r2_score(y_train, y_train_pred),r2_score(y_test, y_test_pred))) #Output: #MSE train: 1.642, test: 11.052 #R^2 train: 0.979, test: 0.878 plt.scatter(y_train_pred, y_train_pred - y_train, c='black', marker='o', s=35, alpha=0.5, label='Training data') plt.scatter(y_test_pred, y_test_pred - y_test, c='lightgreen', marker='s', s=35, alpha=0.7, label='Test data') plt.xlabel('Predicted values') plt.ylabel('Residuals') plt.legend(loc='upper left') plt.hlines(y=0, xmin=-10, xmax=50, lw=2, color='red') plt.xlim([-10, 50]) plt.tight_layout() # plt.savefig('./figures/slr_residuals.png', dpi=300) plt.show()

关注公众号:瑞行AI,欢迎交流AI算法、数据分析、leetcode刷题等技术,提供技术方案咨询和就业指导服务!



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3