圆锥曲线中定点和定值问题的解题方法课件

您所在的位置:网站首页 圆锥曲线定点问题方法总结 圆锥曲线中定点和定值问题的解题方法课件

圆锥曲线中定点和定值问题的解题方法课件

2024-06-29 09:33| 来源: 网络整理| 查看: 265

圆锥曲线中的定值定点问题教学提纲

圆锥曲线中的定值定 点问题

2019届高二文科数学新课改试验学案(10) ---圆锥曲线中的定值定点问题 1.已知椭圆()2222:10x y C a b a b +=>> 的离心率为2, 点(在C 上. (I )求C 的方程; (II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M , 证明:直线OM 的斜率与直线l 的斜率乘积为定值. 2.已知椭圆C :过点A (2,0),B (0,1)两点. (I )求椭圆C 的方程及离心率; (Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N , 求证:四边形ABNM 的面积为定值. 22 221x y a b +=

3.椭圆()2222:10x y C a b a b +=>>的离心率为12 ,其左焦点到点()2,1P (I )求椭圆C 的标准方程 (Ⅱ)若直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左右顶点),且以AB 为直径的圆 过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标.

答案 1.【答案】(I )22 22184 x y +=(II )见试题解析 试题解析: 【名师点睛】本题第一问求椭圆方程的关键是列出关于22,a b 的两个方程,通过解方程组求出22,a b ,解决此类问题要重视方程思想的应用;第二问是证明问题,解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题. 2.

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

圆锥曲线中的定点定值问题的四种模型

圆锥曲线中的定点定值问题的四种模型 定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。如果能够熟识这些常见的结论,那么解题必然会事半功倍。下面总结圆锥曲线中几种常见的几种定点模型: 模型一:“手电筒”模型 例题、已知椭圆C :13 42 2=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标。 解:设1122(,),(,)A x y B x y ,由22 3412 y kx m x y =+??+=?得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +-> 2121222 84(3) ,3434mk m x x x x k k -+=-?=++ 222 2 121212122 3(4) ()()()34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ?=-, 1212122 y y x x ∴?=---,1212122()40y y x x x x +-++=, 222222 3(4)4(3)1640343434m k m mk k k k --+++=+++, 整理得:22 71640m mk k ++=,解得:1222,7 k m k m =-=- ,且满足22 340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =- 时,2:()7l y k x =-,直线过定点2(,0)7 综上可知,直线l 过定点,定点坐标为2 (,0).7 ◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直 线交圆锥曲线于AB ,则AB 必过定点)) (,)((2 222022220b a b a y b a b a x +-+-。(参考百度文库文章:“圆锥曲线的弦对定点张直角的一组性质”) ◆模型拓展:本题还可以拓展为“手电筒”模型:只要任意一个限定AP 与BP 条件(如=?BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点(因为三条直线形似手电筒,固名曰手电筒模型)。 此模型解题步骤: Step1:设AB 直线m kx y +=,联立曲线方程得根与系数关系,?求出参数范围; Step2:由AP 与BP 关系(如1-=?BP AP k k ),得一次函数)()(k f m m f k ==或者; Step3:将)()(k f m m f k ==或者代入m kx y +=,得定定y x x k y +-=)(。

专题3:圆锥曲线中的定值定点问题(解析版)

专题3:圆锥曲线中的定值定点问题(解析版) 1.已知椭圆2222:1(0)x y C a b a b +=>> 的离心率为2 ,短轴一个端点到右焦点F 的 . (1)求椭圆C 的标准方程 ; (2)过点 F 的直线l 交椭圆于A 、B 两点,交y 轴 于P 点,设 12,PA AF PB BF λλ==,试判断12λλ+是否为定值?请说明理由. 【答案】(1)2 212 x y +=;(2)是定值-4,理由见解析. 【解析】 【分析】 (1)由题意可得a , c ,b ,可求得椭的圆方程. (2)设直线l 的方程为()1y k x =-,与椭圆的方程联立整理得: ()2 2 22124220k x k x k +-+-=,设()11,A x y ,()22,B x y , 由一元二次方程的根与 系数的关系可得2122 212241222 12k x x k k x x k ?+=??+?-?=?+? ,再根据向量的坐标运算表示出1111x x λ=-, 2 22 1x x λ= -, 代入计算可求得定值. 【详解】 (1 )由题可得a = ,又2 c e a = = ,所以1c = ,1b ==, 因此椭圆方程为2 212 x y +=, (2)由题可得直线斜率存在,设直线l 的方程为()1y k x =-, 由()22 112 y k x x y ?=-??+=??消去y ,整理得:()2222124220k x k x k +-+-=,

设()11,A x y ,()22,B x y , 则2122 2 1224122212k x x k k x x k ?+=??+?-?=?+? , 又()1,0F ,()0,P k -,则()11,PA x y k =+,()111,AF x y =--, 由1PA AF λ=可得()1111x x λ=-,所以1111x x λ=-,同理可得2 22 1x x λ=-, 所以 12121211x x x x λλ+= +--()()()12 121212121212 22111x x x x x x x x x x x x x x +-+-==---++2222 22 22 422 2121242211212k k k k k k k k --?++=--+ ++4=-, 所以,12λλ+为定值-4. 【点睛】 本题考查直线与椭圆的定值问题,关键在于联立方程组,得出交点的坐标的关系,将目标条件转化到交点的坐标上去,属于中档题. 2.已知椭圆C :()22 2210x y a b a b +=>>的离心率为12,且经过点31,2??-- ???, (1)求椭圆C 的标准方程; (2)过点()1,0作直线l 与椭圆相较于A ,B 两点,试问在x 轴上是否存在定点Q ,使得两条不同直线QA ,QB 恰好关于x 轴对称,若存在,求出点Q 的坐标,若不存在,请说明理由. 【答案】(1)22 143 x y +=; (2)存在(4,0)Q ,使得两条不同直线QA ,QB 恰好关于x 轴对称. 【解析】 【分析】 (1)将点坐标代入方程,结合离心率公式及222a b c =+ ,即可求出2,a b ==,进而可求得椭圆C 的标准方程; (2)设直线l 的方程为1x my =+,与椭圆联立,可得12y y +,12y y 的表达式,根据

圆锥曲线解题技巧教案

圆锥曲线―概念、方法、题型、及应试技巧总结 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方程8=表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y += 1(0a b >>)。方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B , C 同号,A ≠B )。 如(1)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____(答: 11 (3,)(,2)22 ---) ; (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1 (0,0a b >>)。方程22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A , B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2= e 的双曲线C 过点 )10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口 向上时22(0)x py p =>,开口向下时2 2(0)x py p =->。 如定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。 4 5 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 1

高考圆锥曲线中的定点定值专题(附答案)

高考圆锥曲线中的定点定值问题 定点问题是常见的考题形式,解决这类问题的关键就是引进变参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和b 的一次函数关系式,代入直线方程即可 类型一:“手电筒”模型 例题、已知椭圆C :13 42 2=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标。 解:设1122(,),(,)A x y B x y ,由22 3412 y kx m x y =+?? +=?得222 (34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +-> 2121222 84(3) ,3434mk m x x x x k k -+=-?=++ 222 2 121212122 3(4) ()()()34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ Q 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ?=-, 1212122 y y x x ∴?=---,1212122()40y y x x x x +-++=, 222222 3(4)4(3)1640343434m k m mk k k k --+++=+++, 整理得:2 2 71640m mk k ++=,解得:1222,7 k m k m =-=- ,且满足22 340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =-时,2 :()7 l y k x =-,直线过定点2(,0)7 综上可知,直线l 过定点,定点坐标为2 (,0).7 ◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直 线交圆锥曲线于AB ,则AB 必过定点)) (,)(( 2 222022220b a b a y b a b a x +-+-。 ◆模型拓展:本题还可以拓展为“手电筒”模型:只要任意一个限定AP 与BP 条件(如=?BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点(因为三条直线形似手电筒,固名曰手电筒模型)。

圆锥曲线中的定点定值问题(教师版)

第四讲 圆锥曲线中的定点定值问题 一、直线恒过定点问题 例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2 :4C x y =的切线,EA EB , 切点为 A 、 B , 求证:直线AB 恒过一定点,并求出该定点的坐标; 解:设),2,(-a E )4,(),4,(2 22211x x B x x A ,x y x y 2 1 4'2=∴= , )(21 41121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(2 1 421121x a x x -=--∴整理得:082121=--ax x 同理可得:2 22280x ax --= 8 ,2082,2121221-=?=+∴=--∴x x a x x ax x x x 的两根是方程 )2 4,(2+a a AB 中点为可得,又22 12 121212124442 AB x x y y x x a k x x x x - -+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2 a y x AB =+∴即过定点0,2. 例2、已知点00(,)P x y 是椭圆22:12x E y +=上任意一点,直线l 的方程为0012 x x y y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒 过一定点G ,求点G 的坐标。 解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --= 设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n 则0000001 212022x n m y x n m y x y ?=-?+??-??--=??,解得3200020432 0000 2002344424482(4)x x x m x x x x x n y x ?+--=?-??+--?=?-? ∴ 直线PN 的斜率为4320000032 00004288 2(34) n y x x x x k m x y x x -++--==---+

高考数学专题复习-圆锥曲线定值定点问题

圆锥曲线问题的解题规律可以概括为: “联立方程求交点,韦达定理求弦长,根的分布范围,曲线定义不能忘,引参、用参巧解题,分清关系思路畅、数形结合关系明,选好,选准突破口,一点破译全局活。 定点、定直线、定值专题 已知直线l : y=x+,圆O :x 2+y 2=5,椭圆E :过圆O 上任意一点P 作椭圆E 的两条切线,若切线都存在斜率,求证两切线斜率之积为定值. 2.过点作不与y 轴垂直的直线l 交该椭圆于M 、N 两点,A 为椭圆的左顶点,试判断∠MAN 的大小是否为定值,并说明理由. 3.设A (x 1,y 1),B (x 2,y 2 )是椭圆,(a >b >0)上的两点,已知向量=(,),=(,),且,若椭圆的离心率,短轴长为2,O 为坐标原点: (Ⅰ)求椭圆的方程;

(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k 的值; (Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 4.已知椭圆C的中心在原点,焦点在x轴上,长轴长是短轴长的倍,且椭圆 C经过点M. (1)求椭圆C的标准方程; (2)过圆O:上的任意一点作圆的一条切线l与椭圆C交于A、B两点.求证:为定值. 5.已知平面上的动点P(x,y)及两定点A(﹣2,0),B(2,0),直线PA,PB的斜率分别是k1,k2且. (1)求动点P的轨迹C的方程; (2)设直线l:y=kx+m与曲线C交于不同的两点M,N. ①若OM⊥ON(O为坐标原点),证明点O到直线l的距离为定值,并求出这个定值 ②若直线BM,BN的斜率都存在并满足,证明直线l过定点,并求出这个定点.

圆锥曲线解题技巧和方法综合(全)

圆锥曲线的解题技巧 一、常规七大题型: (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。 如:(1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 典型例题 给定双曲线x y 2 2 21-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin )sin(++=e ;

(2)求|||PF PF 1323+的最值。 (3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。 典型例题 抛物线方程,直线与轴的交点在抛物线准线的右边。y p x p x y t x 210=+>+=()() (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。 (4)圆锥曲线的相关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。 若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。 若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。 (1),可以设法得到关于a 的不等式,通过解不等式求出a 的范围,即:“求范围,找不等式”。或者将a 表示为另一个变量的函数,利用求函数的值域求出a 的范围;对于(2)首先要把△NAB 的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。 最值问题的处理思路: 1、建立目标函数。用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是由方程求x 、y 的范围; 2、数形结合,用化曲为直的转化思想; 3、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值; 4、借助均值不等式求最值。 典型例题 已知抛物线y 2=2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B , |AB|≤2p (1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。

圆锥曲线的定点、定值和最值问题

圆锥曲线的定点、定值、范围和最值问题 会处理动曲线(含直线)过定点的问题;会证明与曲线上动点有关的定值问题;会按条件建 . 一、主要知识及主要方法: 1. 形式出现,特殊方法往往比较奏效。 2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决。 3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值. 二、精选例题分析 【举例1】 (05广东改编)在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同 动点A 、B 满足AO BO ⊥. (Ⅰ)求AOB △得重心G 的轨迹方程; (Ⅱ)AOB △的面积是否存在最小值?若存在,请求出最小值; 若不存在,请说明理由. 【举例2】已知椭圆2 2142x y +=上的两个动点,P Q 及定点1,2M ? ?? ,F 为椭圆的左焦点,且PF ,MF ,QF 成等差数列.()1求证:线段PQ 的垂直平分线经过一个定点A ; ()2设点A 关于原点O 的对称点是B ,求PB 的最小值及相应的P 点坐标. 【举例3】(06全国Ⅱ改编)已知抛物线2 4x y =的焦点为F ,A 、B 是抛物线上的两动点,且 AF FB λ=u u u r u u u r (0λ>).过A 、B 两点分别作抛物线的切线(切线斜率分别为0.5x A ,0.5x B ),设其交点为 M 。 (Ⅰ)证明FM AB ?u u u u r u u u r 为定值;

圆锥曲线解题技巧和方法综合

(本文有两套教案,第一套比较笼统,第二套比较好) 圆锥曲线的解题技巧 一、常规七大题型: (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11, (,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意 斜率不存在的请款讨论),消去四个参数。 如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 020 20=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点, ∠=PF F 12α,∠=PF F 21β。

(1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。 (3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。 典型例题 抛物线方程,直线与轴的交点在抛物线准线的右边。y p x p x y t x 210=+>+=()() (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。 (4)圆锥曲线的相关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。 若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。 若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。 (1),可以设法得到关于a 的不等式,通过解不等式求出a 的范围,即:“求范围,找不等式”。或者将a 表示为另一个变量的函数,利用求函数的值域求出a 的范围;对于(2)首先要把△NAB 的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。 最值问题的处理思路: 1、建立目标函数。用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是由方程求x 、y 的范围; 2、数形结合,用化曲为直的转化思想; 3、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值; 4、借助均值不等式求最值。 典型例题 已知抛物线y 2 =2px(p>0),过M (a,0)且斜率为1的直线L 与抛物线交于不同的两点A 、B , |AB|≤2p (1)求a 的取值范围;(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。

圆锥曲线中的定点和定值问题的解题方法

寒假文科强化(四):圆锥曲线中的定点和定值问题的解答方法 【基础知识】 1、对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决. 2、在几何问题中,有些几何量与参数无关,这就构成了定值问题,解决这类问题一种思路是进行一般计算推理求出其结果;另一种是通过考查极端位置,探索出“定值”是多少,然后再进行一般性证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的.如果试题以客观题形式出现,特殊方法往往比较奏效. 题型一 :定点问题 法一:特殊探求,一般证明; 法二:设该直线(曲线)上两点的坐标,利用点在直线(曲线)上,建立坐标满足的方程(组),求出相应的直线(曲线),然后再利用直线(曲线)过定点的知识加以解决。 例1 设点A 和B 是抛物线?Skip Record If...?上原点以外的两个动点,且?Skip Record If...?,求证直线?Skip Record If...?过定点。 解:取?Skip Record If...?写出直线?Skip Record If...?的方程; 再取?Skip Record If...?写出直线?Skip Record If...?的方程;最后求出两条直线 的交点,得交点为?Skip Record If...?。 设?Skip Record If...?,直线?Skip Record If...?的方程为?Skip Record If...?, 由题意得?Skip Record If...?两式相减得 ?Skip Record If...?,即?Skip Record If...?, ?Skip Record If...?直线?Skip Record If...?的方程为?Skip Record If...?,整理得?Skip Record If...? ① 又?Skip Record If...??Skip Record If...?,?Skip Record If...??Skip Record If...?,?Skip Record If...?,?Skip Record If...? O A B

圆锥曲线中的定点定值问题的四种模型

2017届高三第一轮复习专题训练之 圆锥曲线中的定点定值问题的四种模型 定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。下面总结圆锥曲线中几种常见的几种定点模型: 模型一:“手电筒”模型 例题、(07山东)已知椭圆C :13 42 2=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标。 解:设1122(,),(,)A x y B x y ,由22 3412 y kx m x y =+??+=?得222 (34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +-> 2121222 84(3) ,3434mk m x x x x k k -+=-?=++ 222 2 121212122 3(4) ()()()34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ?=-, 1212122 y y x x ∴?=---,1212122()40y y x x x x +-++=, 222222 3(4)4(3)1640343434m k m mk k k k --+++=+++, 整理得:22 71640m mk k ++=,解得:1222,7 k m k m =-=- ,且满足22 340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =- 时,2:()7l y k x =-,直线过定点2(,0)7 综上可知,直线l 过定点,定点坐标为2 (,0).7 ◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直 线交圆锥曲线于AB ,则AB 必过定点)) (,)((2 222022220b a b a y b a b a x +-+-。(参考百度文库文章:“圆锥曲线的弦对定点张直角的一组性质”) ◆模型拓展:本题还可以拓展为“手电筒”模型:只要任意一个限定AP 与BP 条件(如=?BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点(因为三条直线形似手电筒,固名曰手电筒模型)。(参考优酷视频资料尼尔森数学第一季第13节) 此模型解题步骤: Step1:设AB 直线m kx y +=,联立曲线方程得根与系数关系,?求出参数范围; Step2:由AP 与BP 关系(如1-=?BP AP k k ),得一次函数)()(k f m m f k ==或者; Step3:将)()(k f m m f k ==或者代入m kx y +=,得定定y x x k y +-=)(。 ◆迁移训练 练习1:过抛物线M:px y 22 =上一点P (1,2)作倾斜角互补的直线PA 与PB ,交M 于A 、B 两点,求证:直线AB 过定点。(注:本题结论也适用于抛物线与双曲线)

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

(完整版)专题——圆锥曲线定值问题

高三二轮一一圆锥曲线中的“定值”问题 概念与用法 圆锥曲线中的定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难 点.解决这个难点的基本思想是函数思想, 可以用变量表示问题中的直线方程、数量积、 比例关系等,这些直线方程、数量积、比例关系等不受变量所影响的一个值,就是要求 的定值?具体地说,就是将要证明或要求解的量表示为某个合适变量的函数,化简消去 变量即得定值. 基本解题数学思想与方法 在圆锥曲线中,某些几何量在特定的关系结构中, 不受相关变元的制约而恒定不变, 则称该变量具有定值特征. 解答此类问题的基本策略有以下两种: 1、 把相关几何量的变元特殊化,在特例中求出几何量 的定值,再证明结论与特定状态 无关. 2、 把相关几何量用曲线系里的参变量表示,再证明结论与求参数无关. 题型示例 一?证明某一代数式为定值: 1、如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB. 解:由已知条件,得 F(0, 1), Z>O ?设 A(x 1, y 1), B(x 2, y 2).由 AF =入FB , 即得 (一x 1, 1 — y) = ?(X 2, y 2 — 1),所以 —X1=入2 ① 1 — y1 =心2— 1)② 若M 为定点,证明:直线 EF 的斜率为定值; 解:设M (y 0 ,y o ),直线 ME 的斜率为 k(l>0),直线 MF 的斜率为—k , 直线 ME 方程为y y o k(x y (). ???由 y o k (x yo) ,消 x 得 ky 2 y o (i ky o ) o 解得 y F 1 ky o X F 2 (1 ky o ) 厂; 同理 1 ky ,X F 1 ky 2 y E y F X E X F 1 k (1 ky 。) ky o 1 ky o 2 (1 ky °) 2 k 4ky o 2y o (定值) k 2 所以直线EF 的斜率为定值 k 2 ▲利用消元法 2、已知抛物线x 2= 4y 的焦点为 F , A 、B 是抛物线上的两动点, 且AF =入FB B 两点分别作抛物线的切线,设其交点为 M .证明FM -AB 为定值

圆锥曲线定点、定直线、定值问题

定点、定直线、定值专题 1、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程; (Ⅱ)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. 【标准答案】(I)由题意设椭圆的标准方程为22 221(0)x y a b a b +=>> 3,1a c a c +=-=,2 2,1,3a c b ===22 1.43 x y ∴+ = (II)设1122(,),(,)A x y B x y ,由2214 3y kx m x y =+?? ?+=??得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ?=-+->,22340k m +->. 2121222 84(3) ,.3434mk m x x x x k k -?+=-?=++222 2 121212122 3(4) ()()().34m k y y kx m kx m k x x mk x x m k -?=+?+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 1AD BD k k ?=-,1212122 y y x x ∴ ?=---, (最好是用向量点乘来)1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mk k k k --+++=+++, 2271640m mk k ++=,解得1222,7 k m k m =-=- ,且满足22 340k m +->. 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾; 当27k m =- 时,2:()7l y k x =-,直线过定点2 (,0).7 综上可知,直线l 过定点,定点坐标为2 (,0).7 2、已知椭圆C 的离心率e = ()1A 2,0-,()2A 2,0。(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线x my 1=+与椭圆C 交于P 、Q 两点,直线1A P 与2A Q 交于点S 。试问:当m 变化时,点S 是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由。

圆锥曲线中的定值定点问题

圆锥曲线中的定值定点 问题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

2019届高二文科数学新课改试验学案(10) ---圆锥曲线中的定值定点问题 1.已知椭圆()2222:10x y C a b a b +=>> 点(在C 上. (I )求C 的方程; (II )直线l 不经过原点O ,且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M , 证明:直线OM 的斜率与直线l 的斜率乘积为定值. 2.已知椭圆C :22 221x y a b +=过点A (2,0),B (0,1)两点. (I )求椭圆C 的方程及离心率; (Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N , 求证:四边形ABNM 的面积为定值. 3.椭圆()2222:10x y C a b a b +=>>的离心率为12 ,其左焦点到点()2,1P (I )求椭圆C 的标准方程 (Ⅱ)若直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左右顶点),且以AB 为直径的圆 过椭圆C 的右顶点。求证:直线l 过定点,并求出该定点的坐标. 答案 1.【答案】(I )22 22184 x y +=(II )见试题解析

试题解析: 【名师点睛】本题第一问求椭圆方程的关键是列出关于22,a b 的两个方程,通过解方程组求出22,a b ,解决此类问题要重视方程思想的应用;第二问是证明问题,解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题. 2.



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3