Python 五子棋AI实现(2):棋型评估函数实现

您所在的位置:网站首页 五子棋怎么写 Python 五子棋AI实现(2):棋型评估函数实现

Python 五子棋AI实现(2):棋型评估函数实现

2024-07-12 14:04| 来源: 网络整理| 查看: 265

python 五子棋AI实现(2):棋型评估函数实现 五子棋基本棋型介绍评估方法介绍简单AI介绍代码实现完整代码main.pyGameMap.pyChessAI.py

五子棋基本棋型介绍

参考资料:http://game.onegreen.net/wzq/HTML/142336.html 最常见的基本棋型大体有以下几种:连五,活四,冲四,活三,眠三,活二,眠二。

① 连五:顾名思义,五颗同色棋子连在一起,不需要多讲。 图2-1连5

② 活四:有两个连五点(即有两个点可以形成五),图中白点即为连五点。 稍微思考一下就能发现活四出现的时候,如果对方单纯过来防守的话,是已经无法阻止自己连五了。 图2-2活四

③ 冲四:有一个连五点,如下面三图,均为冲四棋型。图中白点为连五点。 相对比活四来说,冲四的威胁性就小了很多,因为这个时候,对方只要跟着防守在那个唯一的连五点上,冲四就没法形成连五。 图2-3冲四1 图2-4冲四2 图2-5冲四3

④ 活三:可以形成活四的三,如下图,代表两种最基本的活三棋型。图中白点为活四点。 活三棋型是我们进攻中最常见的一种,因为活三之后,如果对方不以理会,将可以下一手将活三变成活四,而我们知道活四是已经无法单纯防守住了。所以,当我们面对活三的时候,需要非常谨慎对待。在自己没有更好的进攻手段的情况下,需要对其进行防守,以防止其形成可怕的活四棋型。 图2-6 活三1 图2-7 活三2 其中图2-7中间跳着一格的活三,也可以叫做跳活三。

⑤ 眠三:只能够形成冲四的三,如下各图,分别代表最基础的六种眠三形状。图中白点代表冲四点。眠三的棋型与活三的棋型相比,危险系数下降不少,因为眠三棋型即使不去防守,下一手它也只能形成冲四,而对于单纯的冲四棋型,我们知道,是可以防守住的。 图2-8 眠三1 图2-9 眠三2 图2-10 眠三3

图2-11眠三4 图2-12 眠三5 图2-13 眠三6 如上所示,眠三的形状是很丰富的。对于初学者,在下棋过程中,很容易忽略不常见的眠三形状,例如图2-13所示的眠三。

有新手学了活三眠三后,会提出疑问,说活三也可以形成冲四啊,那岂不是也可以叫眠三? 会提出这个问题,说明对眠三定义看得不够仔细:眠三的的定义是,只能够形成冲四的三。而活三可以形成眠三,但也能够形成活四。

此外,在五子棋中,活四棋型比冲四棋型具有更大的优势,所以,我们在既能够形成活四又能够形成冲四时,会选择形成活四。

温馨提示:学会判断一个三到底是活三还是眠三是非常重要的。所以,需要好好体会。 后边禁手判断的时候也会有所应用。

⑥ 活二:能够形成活三的二,如下图,是三种基本的活二棋型。图中白点为活三点。 活二棋型看起来似乎很无害,因为他下一手棋才能形成活三,等形成活三,我们再防守也不迟。但其实活二棋型是非常重要的,尤其是在开局阶段,我们形成较多的活二棋型的话,当我们将活二变成活三时,才能够令自己的活三绵绵不绝微风里,让对手防不胜防。 图2-14 在这里插入图片描述 图2-15 在这里插入图片描述 图2-16 在这里插入图片描述

⑦眠二:能够形成眠三的二。图中四个为最基本的眠二棋型,细心且喜欢思考的同学会根据眠三介绍中的图2-13找到与下列四个基本眠二棋型都不一样的眠二。图中白点为眠三点。 图2-17 眠二1 图2-18 眠二2 图2-19 眠二3 图2-20 眠二4

评估方法介绍

由上面的介绍可知,有7种有效的棋型(连五,活四,冲四,活三,眠三,活二,眠二),我们可以创建黑棋和白棋两个数组,记录棋盘上黑棋和白棋分别形成的所有棋型的个数,然后按照一定的规则进行评分。

如何记录棋盘上的棋形个数,一个很直观的方法是,棋盘上有15条水平线,15条竖直线,不考虑长度小于5的斜线,有21条从左上到右下的斜线,21条从左下到右上的斜线。然后对每一条线分别对黑棋和白棋查找是否有符合的棋型。这种方法比较直观,但是实现起来不方便。有兴趣的可以尝试下。

这里用的方法是,对整个棋盘进行遍历,对于每一个白棋或黑棋,以它为中心,记录符合的棋型个数。 具体实现方式如下:

遍历棋盘上的每个点,如果是黑棋或白旗,则对这个点所在四个方向形成的四条线分别进行评估。四个方向即水平,竖直,两个斜线( \ , / ),四个方向依次按照从左到右, 从上到下,从左上到右下,从左下到右上 来检测。

对于具体的一条线,如下图,已选取点为中心,取该方向上前面四个点,后面四个点,组成一个长度为9的数组。 线1 然后找下和中心点相连的同色棋子有几个,比如下图,相连的白色棋子有3个,根据相连棋子的个数再分别进行判断,最后得出这行属于上面说的哪一种棋型。具体判断可以看代码中的 analysisLine 函数. 这里有个注意点,在评估白旗1的时候,白棋3和5已经被判断过,所以要标记下,下次遍历到这个方向的白棋3和5,需要跳过,避免重复统计棋型。 线2

根据棋盘上黑棋和白棋的棋型统计信息,按照一定规则进行评分。 假设形成该棋局的最后一步是黑棋下的,则最后的评分是(黑棋得分 - 白棋得分),在相同棋型相同个数的情况下,白棋会占优,因为下一步是白棋下。比如黑棋有个冲四,白棋有个冲四,显然白棋占优,因为下一步白棋就能成连五。 按照下面的规则依次匹配,下面设的评分值是可以优化调整的: 前面9条为必杀情况,会直接返回评分,

黑棋连5,评分为10000白棋连5,评分为 -10000黑棋两个冲四可以当成一个活四白棋有活四,评分为 -9050白棋有冲四,评分为 -9040黑棋有活四,评分为 9030黑棋有冲四和活三,评分为 9020黑棋没有冲四,且白棋有活三,评分为 9010黑棋有2个活三,且白棋没有活三或眠三,评分为 9000下面针对黑棋或白棋的活三,眠三,活二,眠二的个数依次增加分数,评分为(黑棋得分 - 白棋得分) 简单AI介绍

有了评估函数,轮到AI下棋时,就要针对当前的棋局,找到一个最有利的位置来下。AI会尝试在每个空点下棋,形成一个新的棋局,然后用评估函数来获取这个棋局时的评分。从中选取评分最高的位置来就行了。 AI 获取最有利位置的逻辑:

遍历棋盘上的每一个空点: 在这个空点下棋,获取新的棋局的评分 如果是更高的评分,则保存该位置 将这个位置恢复为空点获得最高评分的位置

上面这段逻辑我们在后续的文章中会不断优化,使得AI越来越厉害。

代码实现

AI的实现都在ChessAI类中,record数组记录所有位置的四个方向是否被检测过。count二维数组记录黑棋和白棋的棋型个数统计。pos_score 给棋盘上每个位置设一个初始分数,越靠近棋盘中心,分数越高,用来在最开始没有任何棋型时的,AI优先选取靠中心的位置。 reset函数每次调用评估函数前都需要清一下之前的统计数据。

class ChessAI(): def __init__(self, chess_len): self.len = chess_len # [horizon, vertical, left diagonal, right diagonal] self.record = [[[0,0,0,0] for x in range(chess_len)] for y in range(chess_len)] self.count = [[0 for x in range(CHESS_TYPE_NUM)] for i in range(2)] self.pos_score = [[(7 - max(abs(x - 7), abs(y - 7))) for x in range(chess_len)] for y in range(chess_len)] def reset(self): for y in range(self.len): for x in range(self.len): for i in range(4): self.record[y][x][i] = 0 for i in range(len(self.count)): for j in range(len(self.count[0])): self.count[i][j] = 0 self.save_count = 0

findBestChess 函数就是AI的入口函数。 search 函数是上面AI逻辑的代码实现,先通过 genmove 函数获取棋盘上所有的空点,然后依次尝试,获得评分最高的位置并返回。

# get all positions that is empty def genmove(self, board, turn): moves = [] for y in range(self.len): for x in range(self.len): if board[y][x] == 0: score = self.pos_score[y][x] moves.append((score, x, y)) moves.sort(reverse=True) return moves def search(self, board, turn): moves = self.genmove(board, turn) bestmove = None max_score = -0x7fffffff for score, x, y in moves: board[y][x] = turn.value score = self.evaluate(board, turn) board[y][x] = 0 if score > max_score: max_score = score bestmove = (max_score, x, y) return bestmove def findBestChess(self, board, turn): time1 = time.time() score, x, y = self.search(board, turn) time2 = time.time() print('time[%f] (%d, %d), score[%d] save[%d]' % ((time2-time1), x, y, score, self.save_count)) return (x, y)

evaluate函数, 就是上面评估方法的代码实现,参数turn表示最近一手棋是谁下的,根据turn决定的mine(表示自己棋的值)和oppoent(表示对手棋的值,下一步棋由对手下),在对棋型评分时会用到。checkWin 是游戏用来判断是否有一方获胜了。 其中调用的getScore函数就是对黑棋和白棋进行评分。 evaluatePoint函数就是对于一个位置的四个方向分别进行检查。

def evaluate(self, board, turn, checkWin=False): self.reset() if turn == MAP_ENTRY_TYPE.MAP_PLAYER_ONE: mine = 1 opponent = 2 else: mine = 2 opponent = 1 for y in range(self.len): for x in range(self.len): if board[y][x] == mine: self.evaluatePoint(board, x, y, mine, opponent) elif board[y][x] == opponent: self.evaluatePoint(board, x, y, opponent, mine) mine_count = self.count[mine-1] opponent_count = self.count[opponent-1] if checkWin: return mine_count[FIVE] > 0 else: mscore, oscore = self.getScore(mine_count, opponent_count) return (mscore - oscore) def evaluatePoint(self, board, x, y, mine, opponent): dir_offset = [(1, 0), (0, 1), (1, 1), (1, -1)] # direction from left to right for i in range(4): if self.record[y][x][i] == 0: self.analysisLine(board, x, y, i, dir_offset[i], mine, opponent, self.count[mine-1]) else: self.save_count += 1

analysisLine函数是判断一条线上自己棋能形成棋型的代码, mine表示自己棋的值,opponent表示对手棋的值。 要根据中心点相邻己方棋子能连成的个数来分别判断,己方棋值设为M,对方棋值设为P,空点值设为X。具体可以看代码中的注释。

连成5个点,可以直接返回连成4个点,要考虑是否被对手棋档着,比如 PMMMMX连成3个点,要考虑隔一个空点的情况,比如 MXMMMX。连成2个点,要考虑隔一个空点的如情况,比如 MXMMX,MMXMM。只有1个点,要考虑隔一个或二个空点的情况,比如 XMXMX,XMXXMX。

getLine函数,根据棋子的位置和方向,获取上面说的长度为9的线。有个取巧的地方,如果线上的位置超出了棋盘范围,就将这个位置的值设为对手的值,因为超出范围和被对手棋挡着,对棋型判断的结果是一样的。 setRecord函数 标记已经检测过,需要跳过的棋子。

# line is fixed len 9: XXXXMXXXX def getLine(self, board, x, y, dir_offset, mine, opponent): line = [0 for i in range(9)] tmp_x = x + (-5 * dir_offset[0]) tmp_y = y + (-5 * dir_offset[1]) for i in range(9): tmp_x += dir_offset[0] tmp_y += dir_offset[1] if (tmp_x = self.len or tmp_y = self.len): line[i] = opponent # set out of range as opponent chess else: line[i] = board[tmp_y][tmp_x] return line def analysisLine(self, board, x, y, dir_index, dir_offset, mine, opponent, count): # record line range[left, right] as analysized def setRecord(self, x, y, left, right, dir_index, dir_offset): tmp_x = x + (-5 + left) * dir_offset[0] tmp_y = y + (-5 + left) * dir_offset[1] for i in range(left, right+1): tmp_x += dir_offset[0] tmp_y += dir_offset[1] self.record[tmp_y][tmp_x][dir_index] = 1 empty = MAP_ENTRY_TYPE.MAP_EMPTY.value left_idx, right_idx = 4, 4 line = self.getLine(board, x, y, dir_offset, mine, opponent) while right_idx 0: if line[left_idx-1] != mine: break left_idx -= 1 left_range, right_range = left_idx, right_idx while right_range 0: if line[left_range-1] == opponent: break left_range -= 1 chess_range = right_range - left_range + 1 if chess_range 5: # XMMMXX, XXMMMX count[THREE] += 1 else: # PXMMMXP count[STHREE] += 1 elif left_empty or right_empty: # PMMMX, XMMMP count[STHREE] += 1 # Chong Four: MMXMM, only check right direction # Live Three: XMXMMX, XMMXMX the two types can both exist # Sleep Three: PMXMMX, XMXMMP, PMMXMX, XMMXMP # Live Two: XMMX # Sleep Two: PMMX, XMMP if m_range == 2: left_empty = right_empty = False left_three = right_three = False if line[left_idx-1] == empty: if line[left_idx-2] == mine: setRecord(self, x, y, left_idx-2, left_idx-1, dir_index, dir) if line[left_idx-3] == empty: if line[right_idx+1] == empty: # XMXMMX count[THREE] += 1 else: # XMXMMP count[STHREE] += 1 left_three = True elif line[left_idx-3] == opponent: # PMXMMX if line[right_idx+1] == empty: count[STHREE] += 1 left_three = True left_empty = True if line[right_idx+1] == empty: if line[right_idx+2] == mine: if line[right_idx+3] == mine: # MMXMM setRecord(self, x, y, right_idx+1, right_idx+2, dir_index, dir) count[SFOUR] += 1 right_three = True elif line[right_idx+3] == empty: #setRecord(self, x, y, right_idx+1, right_idx+2, dir_index, dir) if left_empty: # XMMXMX count[THREE] += 1 else: # PMMXMX count[STHREE] += 1 right_three = True elif left_empty: # XMMXMP count[STHREE] += 1 right_three = True right_empty = True if left_three or right_three: pass elif left_empty and right_empty: # XMMX count[TWO] += 1 elif left_empty or right_empty: # PMMX, XMMP count[STWO] += 1 # Live Two: XMXMX, XMXXMX only check right direction # Sleep Two: PMXMX, XMXMP if m_range == 1: left_empty = right_empty = False if line[left_idx-1] == empty: if line[left_idx-2] == mine: if line[left_idx-3] == empty: if line[right_idx+1] == opponent: # XMXMP count[STWO] += 1 left_empty = True if line[right_idx+1] == empty: if line[right_idx+2] == mine: if line[right_idx+3] == empty: if left_empty: # XMXMX #setRecord(self, x, y, left_idx, right_idx+2, dir_index, dir) count[TWO] += 1 else: # PMXMX count[STWO] += 1 elif line[right_idx+2] == empty: if line[right_idx+3] == mine and line[right_idx+4] == empty: # XMXXMX count[TWO] += 1 return CHESS_TYPE.NONE 完整代码

一共有三个文件,新增加了一个ChessAI.py。

main.py

增加了对于ChessAI类的 findBestChess 函数的调用,获取AI选择的下棋位置。

import pygame from pygame.locals import * from GameMap import * from ChessAI import * class Button(): def __init__(self, screen, text, x, y, color, enable): self.screen = screen self.width = BUTTON_WIDTH self.height = BUTTON_HEIGHT self.button_color = color self.text_color = (255, 255, 255) self.enable = enable self.font = pygame.font.SysFont(None, BUTTON_HEIGHT*2//3) self.rect = pygame.Rect(0, 0, self.width, self.height) self.rect.topleft = (x, y) self.text = text self.init_msg() def init_msg(self): if self.enable: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[0]) else: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[1]) self.msg_image_rect = self.msg_image.get_rect() self.msg_image_rect.center = self.rect.center def draw(self): if self.enable: self.screen.fill(self.button_color[0], self.rect) else: self.screen.fill(self.button_color[1], self.rect) self.screen.blit(self.msg_image, self.msg_image_rect) class StartButton(Button): def __init__(self, screen, text, x, y): super().__init__(screen, text, x, y, [(26, 173, 25),(158, 217, 157)], True) def click(self, game): if self.enable: game.start() game.winner = None self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[1]) self.enable = False return True return False def unclick(self): if not self.enable: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[0]) self.enable = True class GiveupButton(Button): def __init__(self, screen, text, x, y): super().__init__(screen, text, x, y, [(230, 67, 64),(236, 139, 137)], False) def click(self, game): if self.enable: game.is_play = False if game.winner is None: game.winner = game.map.reverseTurn(game.player) self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[1]) self.enable = False return True return False def unclick(self): if not self.enable: self.msg_image = self.font.render(self.text, True, self.text_color, self.button_color[0]) self.enable = True class Game(): def __init__(self, caption): pygame.init() self.screen = pygame.display.set_mode([SCREEN_WIDTH, SCREEN_HEIGHT]) pygame.display.set_caption(caption) self.clock = pygame.time.Clock() self.buttons = [] self.buttons.append(StartButton(self.screen, 'Start', MAP_WIDTH + 30, 15)) self.buttons.append(GiveupButton(self.screen, 'Giveup', MAP_WIDTH + 30, BUTTON_HEIGHT + 45)) self.is_play = False self.map = Map(CHESS_LEN, CHESS_LEN) self.player = MAP_ENTRY_TYPE.MAP_PLAYER_ONE self.action = None self.AI = ChessAI(CHESS_LEN) self.useAI = False self.winner = None def start(self): self.is_play = True self.player = MAP_ENTRY_TYPE.MAP_PLAYER_ONE self.map.reset() def play(self): self.clock.tick(60) light_yellow = (247, 238, 214) pygame.draw.rect(self.screen, light_yellow, pygame.Rect(0, 0, MAP_WIDTH, SCREEN_HEIGHT)) pygame.draw.rect(self.screen, (255, 255, 255), pygame.Rect(MAP_WIDTH, 0, INFO_WIDTH, SCREEN_HEIGHT)) for button in self.buttons: button.draw() if self.is_play and not self.isOver(): if self.useAI: x, y = self.AI.findBestChess(self.map.map, self.player) self.checkClick(x, y, True) self.useAI = False if self.action is not None: self.checkClick(self.action[0], self.action[1]) self.action = None if not self.isOver(): self.changeMouseShow() if self.isOver(): self.showWinner() self.map.drawBackground(self.screen) self.map.drawChess(self.screen) def changeMouseShow(self): map_x, map_y = pygame.mouse.get_pos() x, y = self.map.MapPosToIndex(map_x, map_y) if self.map.isInMap(map_x, map_y) and self.map.isEmpty(x, y): pygame.mouse.set_visible(False) light_red = (213, 90, 107) pos, radius = (map_x, map_y), CHESS_RADIUS pygame.draw.circle(self.screen, light_red, pos, radius) else: pygame.mouse.set_visible(True) def checkClick(self,x, y, isAI=False): self.map.click(x, y, self.player) if self.AI.isWin(self.map.map, self.player): self.winner = self.player self.click_button(self.buttons[1]) else: self.player = self.map.reverseTurn(self.player) if not isAI: self.useAI = True def mouseClick(self, map_x, map_y): if self.is_play and self.map.isInMap(map_x, map_y) and not self.isOver(): x, y = self.map.MapPosToIndex(map_x, map_y) if self.map.isEmpty(x, y): self.action = (x, y) def isOver(self): return self.winner is not None def showWinner(self): def showFont(screen, text, location_x, locaiton_y, height): font = pygame.font.SysFont(None, height) font_image = font.render(text, True, (0, 0, 255), (255, 255, 255)) font_image_rect = font_image.get_rect() font_image_rect.x = location_x font_image_rect.y = locaiton_y screen.blit(font_image, font_image_rect) if self.winner == MAP_ENTRY_TYPE.MAP_PLAYER_ONE: str = 'Winner is White' else: str = 'Winner is Black' showFont(self.screen, str, MAP_WIDTH + 25, SCREEN_HEIGHT - 60, 30) pygame.mouse.set_visible(True) def click_button(self, button): if button.click(self): for tmp in self.buttons: if tmp != button: tmp.unclick() def check_buttons(self, mouse_x, mouse_y): for button in self.buttons: if button.rect.collidepoint(mouse_x, mouse_y): self.click_button(button) break game = Game("FIVE CHESS " + GAME_VERSION) while True: game.play() pygame.display.update() for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() exit() elif event.type == pygame.MOUSEBUTTONDOWN: mouse_x, mouse_y = pygame.mouse.get_pos() game.mouseClick(mouse_x, mouse_y) game.check_buttons(mouse_x, mouse_y) GameMap.py

这个文件没有修改,可以直接使用上一篇中的代码。

ChessAI.py

AI实现的代码,这个AI目前很简单,只会思考一步,后续会增加思考的步数,比如2步或4步。

from GameMap import * from enum import IntEnum import copy import time class CHESS_TYPE(IntEnum): NONE = 0, SLEEP_TWO = 1, LIVE_TWO = 2, SLEEP_THREE = 3 LIVE_THREE = 4, CHONG_FOUR = 5, LIVE_FOUR = 6, LIVE_FIVE = 7, CHESS_TYPE_NUM = 8 FIVE = CHESS_TYPE.LIVE_FIVE.value FOUR, THREE, TWO = CHESS_TYPE.LIVE_FOUR.value, CHESS_TYPE.LIVE_THREE.value, CHESS_TYPE.LIVE_TWO.value SFOUR, STHREE, STWO = CHESS_TYPE.CHONG_FOUR.value, CHESS_TYPE.SLEEP_THREE.value, CHESS_TYPE.SLEEP_TWO.value class ChessAI(): def __init__(self, chess_len): self.len = chess_len # [horizon, vertical, left diagonal, right diagonal] self.record = [[[0,0,0,0] for x in range(chess_len)] for y in range(chess_len)] self.count = [[0 for x in range(CHESS_TYPE_NUM)] for i in range(2)] self.pos_score = [[(7 - max(abs(x - 7), abs(y - 7))) for x in range(chess_len)] for y in range(chess_len)] def reset(self): for y in range(self.len): for x in range(self.len): for i in range(4): self.record[y][x][i] = 0 for i in range(len(self.count)): for j in range(len(self.count[0])): self.count[i][j] = 0 self.save_count = 0 def isWin(self, board, turn): return self.evaluate(board, turn, True) # get all positions that is empty def genmove(self, board, turn): moves = [] for y in range(self.len): for x in range(self.len): if board[y][x] == 0: score = self.pos_score[y][x] moves.append((score, x, y)) moves.sort(reverse=True) return moves def search(self, board, turn): moves = self.genmove(board, turn) bestmove = None max_score = -0x7fffffff for score, x, y in moves: board[y][x] = turn.value score = self.evaluate(board, turn) board[y][x] = 0 if score > max_score: max_score = score bestmove = (max_score, x, y) return bestmove def findBestChess(self, board, turn): time1 = time.time() score, x, y = self.search(board, turn) time2 = time.time() print('time[%f] (%d, %d), score[%d] save[%d]' % ((time2-time1), x, y, score, self.save_count)) return (x, y) # calculate score, FIXME: May Be Improved def getScore(self, mine_count, opponent_count): mscore, oscore = 0, 0 if mine_count[FIVE] > 0: return (10000, 0) if opponent_count[FIVE] > 0: return (0, 10000) if mine_count[SFOUR] >= 2: mine_count[FOUR] += 1 if opponent_count[FOUR] > 0: return (0, 9050) if opponent_count[SFOUR] > 0: return (0, 9040) if mine_count[FOUR] > 0: return (9030, 0) if mine_count[SFOUR] > 0 and mine_count[THREE] > 0: return (9020, 0) if opponent_count[THREE] > 0 and mine_count[SFOUR] == 0: return (0, 9010) if (mine_count[THREE] > 1 and opponent_count[THREE] == 0 and opponent_count[STHREE] == 0): return (9000, 0) if mine_count[SFOUR] > 0: mscore += 2000 if mine_count[THREE] > 1: mscore += 500 elif mine_count[THREE] > 0: mscore += 100 if opponent_count[THREE] > 1: oscore += 2000 elif opponent_count[THREE] > 0: oscore += 400 if mine_count[STHREE] > 0: mscore += mine_count[STHREE] * 10 if opponent_count[STHREE] > 0: oscore += opponent_count[STHREE] * 10 if mine_count[TWO] > 0: mscore += mine_count[TWO] * 4 if opponent_count[TWO] > 0: oscore += opponent_count[TWO] * 4 if mine_count[STWO] > 0: mscore += mine_count[STWO] * 4 if opponent_count[STWO] > 0: oscore += opponent_count[STWO] * 4 return (mscore, oscore) def evaluate(self, board, turn, checkWin=False): self.reset() if turn == MAP_ENTRY_TYPE.MAP_PLAYER_ONE: mine = 1 opponent = 2 else: mine = 2 opponent = 1 for y in range(self.len): for x in range(self.len): if board[y][x] == mine: self.evaluatePoint(board, x, y, mine, opponent) elif board[y][x] == opponent: self.evaluatePoint(board, x, y, opponent, mine) mine_count = self.count[mine-1] opponent_count = self.count[opponent-1] if checkWin: return mine_count[FIVE] > 0 else: mscore, oscore = self.getScore(mine_count, opponent_count) return (mscore - oscore) def evaluatePoint(self, board, x, y, mine, opponent): dir_offset = [(1, 0), (0, 1), (1, 1), (1, -1)] # direction from left to right for i in range(4): if self.record[y][x][i] == 0: self.analysisLine(board, x, y, i, dir_offset[i], mine, opponent, self.count[mine-1]) else: self.save_count += 1 # line is fixed len 9: XXXXMXXXX def getLine(self, board, x, y, dir_offset, mine, opponent): line = [0 for i in range(9)] tmp_x = x + (-5 * dir_offset[0]) tmp_y = y + (-5 * dir_offset[1]) for i in range(9): tmp_x += dir_offset[0] tmp_y += dir_offset[1] if (tmp_x = self.len or tmp_y = self.len): line[i] = opponent # set out of range as opponent chess else: line[i] = board[tmp_y][tmp_x] return line def analysisLine(self, board, x, y, dir_index, dir, mine, opponent, count): def setRecord(self, x, y, left, right, dir_index, dir_offset): tmp_x = x + (-5 + left) * dir_offset[0] tmp_y = y + (-5 + left) * dir_offset[1] for i in range(left, right): tmp_x += dir_offset[0] tmp_y += dir_offset[1] self.record[tmp_y][tmp_x][dir_index] = 1 empty = MAP_ENTRY_TYPE.MAP_EMPTY.value left_idx, right_idx = 4, 4 line = self.getLine(board, x, y, dir, mine, opponent) while right_idx 0: if line[left_idx-1] != mine: break left_idx -= 1 left_range, right_range = left_idx, right_idx while right_range 0: if line[left_range-1] == opponent: break left_range -= 1 chess_range = right_range - left_range + 1 if chess_range 5: # XMMMXX, XXMMMX count[THREE] += 1 else: # PXMMMXP count[STHREE] += 1 elif left_empty or right_empty: # PMMMX, XMMMP count[STHREE] += 1 # Chong Four: MMXMM, only check right direction # Live Three: XMXMMX, XMMXMX the two types can both exist # Sleep Three: PMXMMX, XMXMMP, PMMXMX, XMMXMP # Live Two: XMMX # Sleep Two: PMMX, XMMP if m_range == 2: left_empty = right_empty = False left_three = right_three = False if line[left_idx-1] == empty: if line[left_idx-2] == mine: setRecord(self, x, y, left_idx-2, left_idx-1, dir_index, dir) if line[left_idx-3] == empty: if line[right_idx+1] == empty: # XMXMMX count[THREE] += 1 else: # XMXMMP count[STHREE] += 1 left_three = True elif line[left_idx-3] == opponent: # PMXMMX if line[right_idx+1] == empty: count[STHREE] += 1 left_three = True left_empty = True if line[right_idx+1] == empty: if line[right_idx+2] == mine: if line[right_idx+3] == mine: # MMXMM setRecord(self, x, y, right_idx+1, right_idx+2, dir_index, dir) count[SFOUR] += 1 right_three = True elif line[right_idx+3] == empty: #setRecord(self, x, y, right_idx+1, right_idx+2, dir_index, dir) if left_empty: # XMMXMX count[THREE] += 1 else: # PMMXMX count[STHREE] += 1 right_three = True elif left_empty: # XMMXMP count[STHREE] += 1 right_three = True right_empty = True if left_three or right_three: pass elif left_empty and right_empty: # XMMX count[TWO] += 1 elif left_empty or right_empty: # PMMX, XMMP count[STWO] += 1 # Live Two: XMXMX, XMXXMX only check right direction # Sleep Two: PMXMX, XMXMP if m_range == 1: left_empty = right_empty = False if line[left_idx-1] == empty: if line[left_idx-2] == mine: if line[left_idx-3] == empty: if line[right_idx+1] == opponent: # XMXMP count[STWO] += 1 left_empty = True if line[right_idx+1] == empty: if line[right_idx+2] == mine: if line[right_idx+3] == empty: if left_empty: # XMXMX #setRecord(self, x, y, left_idx, right_idx+2, dir_index, dir) count[TWO] += 1 else: # PMXMX count[STWO] += 1 elif line[right_idx+2] == empty: if line[right_idx+3] == mine and line[right_idx+4] == empty: # XMXXMX count[TWO] += 1 return CHESS_TYPE.NONE


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3