Android系统启动流程(基于Android 11)

您所在的位置:网站首页 processapp Android系统启动流程(基于Android 11)

Android系统启动流程(基于Android 11)

2023-03-16 13:15| 来源: 网络整理| 查看: 265

应用进程的虚拟机实例是何时创建的?进程的Binder线程池又是何时启动?为什么所有的应用进程都是由Zygote进程创建?其实这些问题的答案都藏在Android系统的启动流程中。这部分作为整个系统的开端,里面有很多知识点是我们广大Android开发者进阶所必须要了解的。本文将基于Android 11的代码简单的梳理一下这部分流程。

1. init进程启动

Android系统是基于Linux kernel内核的。当用户长按电源键后,会引导芯片加载BootLoader到内存中,并开始拉起Linux kernel内核。待Linux kernel启动完成后便会启动第一个用户空间的进程——init进程。启动init进程时,会进入system/core/init/main.cpp文件执行main方法,主要分两个阶段初始化完成启动过程,代码如下:

/*system/core/init/main.cpp*/ int main(int argc, char** argv) { #if __has_feature(address_sanitizer) __asan_set_error_report_callback(AsanReportCallback); #endif // Boost prio which will be restored later setpriority(PRIO_PROCESS, 0, -20); if (!strcmp(basename(argv[0]), "ueventd")) { // init进程创建子进程ueventd,负责设备节点的创建、权限设定等一些列工作 return ueventd_main(argc, argv); } if (argc > 1) { if (!strcmp(argv[1], "subcontext")) { android::base::InitLogging(argv, &android::base::KernelLogger); const BuiltinFunctionMap& function_map = GetBuiltinFunctionMap(); // 初始化日志系统 return SubcontextMain(argc, argv, &function_map); } if (!strcmp(argv[1], "selinux_setup")) { // 启动Selinux安全策略 return SetupSelinux(argv); } if (!strcmp(argv[1], "second_stage")) { // 执行第二阶段启动 return SecondStageMain(argc, argv); } } // 执行第一阶段启动 return FirstStageMain(argc, argv); } 复制代码 先执行FirstStageMain(argc, argv);FirstStageMain()中主要做了一些目录创建、设备节点创建和设备挂载的动作。简化代码如下: int FirstStageMain(int argc, char** argv) { ... CHECKCALL(clearenv()); CHECKCALL(setenv("PATH", _PATH_DEFPATH, 1)); // Get the basic filesystem setup we need put together in the initramdisk // on / and then we'll let the rc file figure out the rest. CHECKCALL(mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755")); // 挂载tmpfs文件系统 CHECKCALL(mkdir("/dev/pts", 0755)); CHECKCALL(mkdir("/dev/socket", 0755));// 创建dev/socket设备节点 CHECKCALL(mkdir("/dev/dm-user", 0755)); CHECKCALL(mount("devpts", "/dev/pts", "devpts", 0, NULL));// 挂载devpts文件系统 ... CHECKCALL(mount("sysfs", "/sys", "sysfs", 0, NULL));// 挂载sysfs文件系统 CHECKCALL(mount("selinuxfs", "/sys/fs/selinux", "selinuxfs", 0, NULL)); CHECKCALL(mknod("/dev/kmsg", S_IFCHR | 0600, makedev(1, 11)));// 提前创建了kmsg设备节点文件,用于输出log信息 ... #undef CHECKCALL ... return 1; } 复制代码 再执行SecondStageMain(argc, argv):主要逻辑是启动属性服务、解析init.rc文件并启动相关进程,简化代码如下: /*system/core/init/init.cpp*/ int SecondStageMain(int argc, char** argv) { ... PropertyInit(); // 1.初始化属性系统,并从指定文件读取属性 ... StartPropertyService(&property_fd);// 2.设置其他系统属性并开启系统属性服务 ... ActionManager& am = ActionManager::GetInstance(); ServiceList& sm = ServiceList::GetInstance(); LoadBootScripts(am, sm);// 3.解析init.rc等文件,建立rc文件的action 、service,启动其他进程 ... return 0; } static void LoadBootScripts(ActionManager& action_manager, ServiceList& service_list) { Parser parser = CreateParser(action_manager, service_list);// 构建解析器 std::string bootscript = GetProperty("ro.boot.init_rc", ""); if (bootscript.empty()) { /* 依次解析不同路径下谷歌system、soc厂商vendor、odm厂商的init.rc文件并启动相关进程 */ parser.ParseConfig("/system/etc/init/hw/init.rc"); if (!parser.ParseConfig("/system/etc/init")) { late_import_paths.emplace_back("/system/etc/init"); } parser.ParseConfig("/system_ext/etc/init"); if (!parser.ParseConfig("/vendor/etc/init")) { late_import_paths.emplace_back("/vendor/etc/init"); } if (!parser.ParseConfig("/odm/etc/init")) { late_import_paths.emplace_back("/odm/etc/init"); } if (!parser.ParseConfig("/product/etc/init")) { late_import_paths.emplace_back("/product/etc/init"); } } else { parser.ParseConfig(bootscript); } } 复制代码

加载解析rc文件并启动服务。init.rc是一个配置文件,内部由Android初始化语言编写(Android Init Language),编写的脚本 init.rc文件是在init进程启动后执行的启动脚本,文件中记录着init进程需执行的操作。init.rc主要包含五种类型语句:

Action Command Service Option Import

下面我们继续看看init.rc中是如何定义启动zygote进程的?

2. Zygote进程启动

首先在init.rc里改成了通过${ro.zygote}属性的值来决定引入Zygote相关的配置,如下所示:

/*system/core/rootdir/init.rc*/ import /system/etc/init/hw/init.${ro.zygote}.rc ... on late-init # Now we can start zygote for devices with file based encryption trigger zygote-start // 1. 触发启动zygote ... on zygote-start && property:ro.crypto.state=encrypted && property:ro.crypto.type=file wait_for_prop odsign.verification.done 1 # A/B update verifier that marks a successful boot. exec_start update_verifier_nonencrypted start statsd start netd start zygote // 2.启动zygote服务 start zygote_secondary ... 复制代码

${ro.zygote}的取值有4种,在init.rc的同级目录system/core/rootdir/下,可以看到4个Zygote相关的配置文件,表示系统所支持程序的bit位数:

init.zygote32.rc,Zygote进程的执行程序路径为/system/bin/app_process init.zygote64.rc,Zygote进程的执行程序路径为/system/bin/app_process64 init.zygote32_64.rc,会启动两个Zygote进程,有两个执行程序,32为主模式 init.zygote64_32.rc,会启动两个Zygote进程,有两个执行程序,64为主模式(系统兼容运行64位和32位的应用)

我们看看目前最新项目设备中普遍使用的init.zygote64_32.rc文件写法:

/*system/core/rootdir/init.zygote64_32.rc*/ service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --start-system-server --socket-name=zygote //启动64位的zygote class main priority -20 user root group root readproc reserved_disk socket zygote stream 660 root system //创建一个名为zygote的socket socket usap_pool_primary stream 660 root system onrestart exec_background - system system -- /system/bin/vdc volume abort_fuse onrestart write /sys/power/state on onrestart restart audioserver onrestart restart cameraserver onrestart restart media onrestart restart netd onrestart restart wificond task_profiles ProcessCapacityHigh MaxPerformance critical window=${zygote.critical_window.minute:-off} target=zygote-fatal service zygote_secondary /system/bin/app_process32 -Xzygote /system/bin --zygote --socket-name=zygote_secondary --enable-lazy-preload //启动32位的zygote class main priority -20 user root group root readproc reserved_disk socket zygote_secondary stream 660 root system socket usap_pool_secondary stream 660 root system onrestart restart zygote task_profiles ProcessCapacityHigh MaxPerformance 复制代码

第一行中,service表示Zygote进程以服务的形式来启动,zygote则是进程的名字,/system/bin/app_process64是执行程序的路径,后面几项则是传给执行程序的参数,其中--start-system-server表示在Zygote进程启动后需要启动system_server进程。然后是Zygote进程是使用socket来进行跨进程通信的,所以会创建一个名为zygote的socket,660表示访问权限rw-rw----,表示文件拥有者和同一群组用户具有读写权限。

init进程启动后,通过fork和execv来启动Zygote进程,如下简化代码所示:

/*system/core/init/service.cpp*/ Result Service::Start() { ... pid_t pid = -1; if (namespaces_.flags) { pid = clone(nullptr, nullptr, namespaces_.flags | SIGCHLD, nullptr); } else { pid = fork();// 1.fork创建service进程(也就是zygote进程) } if (pid == 0) { ... if (!ExpandArgsAndExecv(args_, sigstop_)) { PLOG(ERROR) FindClass(slashClassName); if (startClass == NULL) { ALOGE("JavaVM unable to locate class '%s'\n", slashClassName); } else { // 3.JNI调用进入java层执行ZygoteInit的main函数 jmethodID startMeth = env->GetStaticMethodID(startClass, "main", "([Ljava/lang/String;)V"); if (startMeth == NULL) { ALOGE("JavaVM unable to find main() in '%s'\n", className); /* keep going */ } else { env->CallStaticVoidMethod(startClass, startMeth, strArray); ... } ... } 复制代码

从代码中可以看到AndroidRuntime#start方法中主要完成三件事情:

启动进程的VM虚拟机;

注册Android系统框架JNI调用到虚拟机中;

通过JNI调用进入java层执行ZygoteInit的main函数;

2.2 java层ZyogeInit

我们继续往下看简化的代码流程:

/*frameworks/base/core/java/com/android/internal/os/ZygoteInit.java*/ public static void main(String[] argv) { ZygoteServer zygoteServer = null; ... try { ... for (int i = 1; i < argv.length; i++) { if ("start-system-server".equals(argv[i])) { // 在init.rc文件中,有--start-system-server参数,表示要创建SystemServer startSystemServer = true; } else if ("--enable-lazy-preload".equals(argv[i])) { enableLazyPreload = true; } ... } ... // In some configurations, we avoid preloading resources and classes eagerly. // In such cases, we will preload things prior to our first fork. if (!enableLazyPreload) { ... preload(bootTimingsTraceLog);// 1.预加载资源 ... } ... zygoteServer = new ZygoteServer(isPrimaryZygote); // 2.创建Socket服务端 if (startSystemServer) { // 3.fork启动system_server进程 Runnable r = forkSystemServer(abiList, zygoteSocketName, zygoteServer); ... } //4. sokcet服务端等待AMS请求(AMS会通过socket请求Zygote来创建应用程序进程) caller = zygoteServer.runSelectLoop(abiList); } catch (Throwable ex) { Log.e(TAG, "System zygote died with exception", ex); throw ex; } ... } static void preload(TimingsTraceLog bootTimingsTraceLog) { ... preloadClasses();// 1.加载system/etc/preloaded-classes文件中定义的各个系统类 ... preloadResources(); // 2.加载系统中定义的各个drawables、color资源 ... } 复制代码

从代码中可以看到ZygoteInit#main方法中主要fork启动system_server进程:

zygote进程中预加载类、主题资源、字体资源等,基于linux的copy-on-write机制,从而加速后续zygote fork创建出的应用进程的启动速度;

创建socket服务端,用于跨进程通信;

fork创建启动系统system_server进程;

Sokcet服务端进入循环监听等待,等待后续AMS请求(AMS会通过socket请求Zygote来创建应用程序进程)。

3. system_server进程的启动

我们接着ZygoteInit#forkSystemServer往下看:

/*frameworks/base/core/java/com/android/internal/os/ZygoteInit.java*/ private static Runnable forkSystemServer(String abiList, String socketName, ZygoteServer zygoteServer) { ... /* Hardcoded command line to start the system server */ // 1.构建启动system_server进程的相关设置参数 String[] args = { "--setuid=1000", "--setgid=1000", "--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1021,1023," + "1024,1032,1065,3001,3002,3003,3006,3007,3009,3010,3011", "--capabilities=" + capabilities + "," + capabilities, "--nice-name=system_server", "--runtime-args", "--target-sdk-version=" + VMRuntime.SDK_VERSION_CUR_DEVELOPMENT, // system_server启动的类名 "com.android.server.SystemServer", }; ... try { ... /* Request to fork the system server process */ // 2.fork创建system_server进程,具体实现在native层 pid = Zygote.forkSystemServer( parsedArgs.mUid, parsedArgs.mGid, parsedArgs.mGids, parsedArgs.mRuntimeFlags, null, parsedArgs.mPermittedCapabilities, parsedArgs.mEffectiveCapabilities); } catch (IllegalArgumentException ex) { throw new RuntimeException(ex); } /* For child process */ if (pid == 0) { if (hasSecondZygote(abiList)) { waitForSecondaryZygote(socketName); } zygoteServer.closeServerSocket(); // 3.pid为0代表在新创建的system_server进程中,继续通过handleSystemServerProcess进一步处理 return handleSystemServerProcess(parsedArgs); } return null; } /** * Finish remaining work for the newly forked system server process. */ private static Runnable handleSystemServerProcess(ZygoteArguments parsedArgs) { ... if (parsedArgs.mInvokeWith != null) { ... } else { ... /* * Pass the remaining arguments to SystemServer. */ // 调用ZygoteInit#zygoteInit函数具体处理 return ZygoteInit.zygoteInit(parsedArgs.mTargetSdkVersion, parsedArgs.mDisabledCompatChanges, parsedArgs.mRemainingArgs, cl); } } public static Runnable zygoteInit(int targetSdkVersion, long[] disabledCompatChanges, String[] argv, ClassLoader classLoader) { ... // 1.RuntimeInit初始化,通过setDefaultUncaughtExceptionHandler设置默认的异常处理机制 RuntimeInit.commonInit(); // 2.触发启动进程的Binder线程池 ZygoteInit.nativeZygoteInit(); // 3.内部经过层层调用,最终通过反射创建"com.android.server.SystemServer"类对象并执行其main函数 return RuntimeInit.applicationInit(targetSdkVersion, disabledCompatChanges, argv, classLoader); } 复制代码

继续结合代码看看RuntimeInit#applicationInit是如何实现反射创建"com.android.server.SystemServer"类对象并执行其main函数的:

/*frameworks/base/core/java/com/android/internal/os/RuntimeInit.java*/ protected static Runnable applicationInit(int targetSdkVersion, long[] disabledCompatChanges, String[] argv, ClassLoader classLoader) { ... return findStaticMain(args.startClass, args.startArgs, classLoader); } protected static Runnable findStaticMain(String className, String[] argv, ClassLoader classLoader) { Class cl; try { // 1.通过反射加载构建"com.android.server.SystemServer"类对象 cl = Class.forName(className, true, classLoader); } catch (ClassNotFoundException ex) { throw new RuntimeException( "Missing class when invoking static main " + className, ex); } Method m; try { //2.访问获取"com.android.server.SystemServer"的main方法 m = cl.getMethod("main", new Class[] { String[].class }); } catch (NoSuchMethodException ex) { throw new RuntimeException( "Missing static main on " + className, ex); } catch (SecurityException ex) { throw new RuntimeException( "Problem getting static main on " + className, ex); } ... /* * This throw gets caught in ZygoteInit.main(), which responds * by invoking the exception's run() method. This arrangement * clears up all the stack frames that were required in setting * up the process. */ // 3.通过抛异常触发执行main函数并清除调用栈 return new MethodAndArgsCaller(m, argv); } static class MethodAndArgsCaller implements Runnable { /** method to call */ private final Method mMethod; /** argument array */ private final String[] mArgs; public MethodAndArgsCaller(Method method, String[] args) { mMethod = method; mArgs = args; } public void run() { try { // 通过反射调用main函数 mMethod.invoke(null, new Object[] { mArgs }); } catch (IllegalAccessException ex) { throw new RuntimeException(ex); } catch (InvocationTargetException ex) { Throwable cause = ex.getCause(); if (cause instanceof RuntimeException) { throw (RuntimeException) cause; } else if (cause instanceof Error) { throw (Error) cause; } throw new RuntimeException(ex); } } } 复制代码

从上面的分析中可以看到,system_server进程创建后,会通过反射创建"com.android.server.SystemServer"入口类对象并执行其main方法,我们继续往下看代码简化流程:

/*frameworks/base/services/java/com/android/server/SystemServer.java*/ public static void main(String[] args) { new SystemServer().run(); } private void run() { ... // 1.创建主线程Looper Looper.prepareMainLooper(); // 2.创建系统Context上下文 createSystemContext(); // 3.创建SystemServiceManager,用于后续系统服务(AMS、WMS等)的创建、启动和生命周期管理 mSystemServiceManager = new SystemServiceManager(mSystemContext); mSystemServiceManager.setStartInfo(mRuntimeRestart, mRuntimeStartElapsedTime, mRuntimeStartUptime); LocalServices.addService(SystemServiceManager.class, mSystemServiceManager); // 4.服务根据优先级被分成3批来启动: try { t.traceBegin("StartServices"); //启动引导服务,如AMS、PMS等 startBootstrapServices(t); //启动核心服务 startCoreServices(t); //启动其他服务 startOtherServices(t); } catch (Throwable ex) { Slog.e("System", "******************************************"); Slog.e("System", "************ Failure starting system services", ex); throw ex; } finally { t.traceEnd(); // StartServices } // 5.开启looper循环 Looper.loop(); } 复制代码

总结一下上述流程,system_server进程创建之后,主要做了如下几件事情:

启动进程的Binder线程池;

创建SystemServiceManager大管家,用于后续系统服务(AMS、WMS等)的创建、启动和生命周期管理;

用SystemServiceManager按照优先级启动系统各个服务;

创建并启动进程的主线程的loop循环;

4. Launcher应用的启动

我们接上一节system_server进程创建之后启动系统服务的流程往下看,以AMS服务的启动为例,相关简化代码流程如下:

/*frameworks/base/services/java/com/android/server/SystemServer.java*/ private void startBootstrapServices(@NonNull TimingsTraceAndSlog t) { ... t.traceBegin("StartActivityManager"); // 1.SystemServiceManager启动AMS服务 ActivityTaskManagerService atm = mSystemServiceManager.startService( ActivityTaskManagerService.Lifecycle.class).getService(); mActivityManagerService = ActivityManagerService.Lifecycle.startService( mSystemServiceManager, atm); mActivityManagerService.setSystemServiceManager(mSystemServiceManager); mActivityManagerService.setInstaller(installer); mWindowManagerGlobalLock = atm.getGlobalLock(); t.traceEnd(); ... } private void startOtherServices(@NonNull TimingsTraceAndSlog t) { ... // We now tell the activity manager it is okay to run third party // code. It will call back into us once it has gotten to the state // where third party code can really run (but before it has actually // started launching the initial applications), for us to complete our // initialization. // 2.从这里开始便可以开始启动三方APP应用(如Launcher) mActivityManagerService.systemReady(() -> { ... }, t); } 复制代码

从上面的代码流程中可以看到system_server进程创建之后,启动系统各核心服务的最后会调用到mActivityManagerService#systemReady便可正式开始启动三方APP应用(如Launcher),我们继续往下看:

/*frameworks/base/services/java/com/android/server/am/ActivitymanagerService.java*/ public void systemReady(final Runnable goingCallback, TimingsTraceAndSlog t){ ... if (bootingSystemUser) { t.traceBegin("startHomeOnAllDisplays"); // 由于Android系统支持多用户和多显示,调用startHomeOnAllDisplays启动每个display上的Home Activity mAtmInternal.startHomeOnAllDisplays(currentUserId,"systemReady"); t.traceEnd(); } } 复制代码

startHomeOnAllDisplays中经过层层调用最终会调用到startHomeActivity启动Category类型为CATEGORY_HOME类型的应用,也就是Launcher桌面,相关代码简化流程如下:

/*frameworks/base/services/java/com/android/server/wm/RootWindowContainer.java*/ boolean startHomeOnTaskDisplayArea(int userId, String reason, TaskDisplayArea taskDisplayArea, boolean allowinstrumenting, boolean fromHomeKey){ ... // 最终调用startHomeActivity启动Category类型为CATEGORY_HOME类型的应用,也就是Launcher桌面 mService.startActivityStartController().startHomeActivity(homeIntent, aInfo, myReason, taskDisplayArea); return true; } 复制代码 5.调试建议

假如你的手机遇到开机比较慢的问题,我们该如何去定位问题的原因出在哪儿呢?这里提供几点调试建议:

5.1 基于系统log定位问题

重启手机,在开机时使用如下adb命令抓取相关日志:

adb shell "logcat -b events |grep "boot_p""

06-03 09:43:19.554 730 730 I boot_progress_start: 4274 //标志着系统kernel启动完成,第一个用户空间进程init进程启动,耗时4274ms 06-03 09:43:19.768 730 730 I boot_progress_preload_start: 4487 //标志着zygote进程开始preload预加载资源 06-03 09:43:20.669 730 730 I boot_progress_preload_end: 5389 //标志着zygote进程preload预加载资源完成 06-03 09:43:21.082 1196 1196 I boot_progress_system_run: 5802 // 标志着system_server进程启动 06-03 09:43:22.186 1196 1196 I boot_progress_pms_start: 6905 // 标志着系统pkms服务启动并开始扫描已安装应用的动作 06-03 09:43:22.430 1196 1196 I boot_progress_pms_system_scan_start: 7150 06-03 09:43:22.757 1196 1196 I boot_progress_pms_data_scan_start: 7477 06-03 09:43:23.033 1196 1196 I boot_progress_pms_scan_end: 7753 06-03 09:43:23.185 1196 1196 I boot_progress_pms_ready: 7905// // 标志着系统pkms服务扫描完成 06-03 09:43:24.133 1196 1196 I boot_progress_ams_ready: 8853 // 标志着AMS已经进入systemReady状态可以启动Home Activity 06-03 09:43:25.468 1196 1523 I boot_progress_enable_screen: 10187 // 标志着锁频界面已经点亮显示,整个开机完成,耗时10187ms 复制代码 5.2 使用bootchart性能分析工具定位问题

bootchart是一个用于linux启动过程性能分析的开源工具软件,在系统启动过程中自动收集CPU占用率、磁盘吞吐率、进程等信息,并以图形方式显示分析结果,可用作指导优化系统启动过程。Android 系统源码中有bootchart的实现,路径在system/core/init/bootchart.cpp。具体使用方法可以参考下文进行操作: blog.csdn.net/qq_19923217…

6. 总结

最后还是用一张图总结Android系统的启动核心流程:

Android系统开机启动流程.png

7. 参考文章

图解 | Android系统的启动 juejin.cn/post/688478…



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3