Reverse Transcription Applications

您所在的位置:网站首页 pcr的应用有哪些 Reverse Transcription Applications

Reverse Transcription Applications

2023-10-05 05:39| 来源: 网络整理| 查看: 265

为了研究RNA的功能,通常通过逆转录(RT)将RNA转化为更稳定的互补DNA(cDNA)。cDNA可通过克隆、PCR和测序等技术研究RNA,因此,逆转录是许多RNA实验工作流程的关键步骤。

On this page: Reverse transcription polymerase chain reaction (RT-PCR)Quantitative RT-PCR (RT-qPCR)cDNA cloning and library constructionRapid amplification of cDNA ends (RACE)Gene expression microarraysRNA sequencing (RNA-Seq)Reverse transcription loop-mediated isothermal amplification (RT-LAMP)References 逆转录聚合酶链式反应(RT-PCR)

在RT-PCR中,通过逆转录(RT)将RNA转化为cDNA,然后通过聚合酶链式反应(PCR)扩增cDNA(图1)。利用cDNA扩增步骤,有望对初始RNA进行进一步研究,即便RNA样本数量有限或低丰度表达。RT-PCR的常见应用包括表达基因检测、转录物变异检测,以及克隆和测序用cDNA模板制备。

图1. 逆转录聚合酶链式反应(RT-PCR)。RT =逆转录,RTase =逆转录酶

由于逆转录可为PCR扩增和下游实验提供cDNA模板,因此,它是实验成功的关键步骤之一。选定的逆转录酶应对所有样本均具有最高效率,即便是难转录RNA样本,如降解、抑制剂残留或具有高度二级结构的RNA样本。

一步法和两步法是两种最常用的RT-PCR方法,每种方法都具有各自的优缺点(图2)。顾名思义,一步法RT-PCR在单个反应管中将第一链cDNA合成(RT)和后续PCR反应结合在一起。该反应设置可简化工作流程、减少结果差异,并将污染的可能性降至最低。一步法RT-PCR简化了大量样本的处理,适用于高通量应用。但是,一步法RT-PCR采用基因特异性引物进行扩增,将分析局限于每个RNA样本中的几个基因。由于反应需兼顾逆转录和扩增条件,因此,一步法RT-PCR在某些情况下可能具有较低的灵敏度和效率。但是,在RT-PCR中使用基因特异性引物,有助于最大化目标cDNA的得率,并最小化扩增背景。

图2. 一步法和两步法RT-PCR的比较。

两步法RT-PCR包含两个独立反应,首先进行第一链cDNA合成(RT),然后在单个反应管中通过PCR扩增第一步骤中所得cDNA。因此,两步法RT-PCR可用于检测单个RNA样本中的多个基因。RT和PCR反应独立进行,可对每个步骤的反应条件进行优化,使逆转录引物选择(oligo(dT)引物、随机六聚体或基因特异性引物)和PCR反应建立(如DNA聚合酶选择和PCR组分)更灵活。与一步法RT-PCR相比,两步法RT-PCR的缺点包括多个步骤延长了工作流程、增加样本处理和操作步骤以及提高污染和结果变异的可能性。

表1. 对比一步法和两步法RT-PCR 一步法RT-PCR两步法RT-PCR反应建立在同时支持逆转录和PCR的条件下,将两个反应结合在一起单独优化的逆转录和PCR反应引物基因特异性引物oligo(dT)、随机六聚体或基因特异性引物最佳用途分析一种或两种基因;高通量平台分析多种基因优势方便,高通量灵活1-step vs. 2-step RT-PCR

Learn about differences between one-step vs. two-step RT-PCR and how to choose between them for your applications.

How to achieve highly specific one-step RT-PCR results

Learn about the mechanism of one-step RT-PCR, its challenges, and how to overcome them.

了解更多PCR教学相关产品cDNA合成试剂盒RT-PCR试剂盒PCR酶和试剂

Top

定量RT-PCR(RT-qPCR)

定量RT-PCR(RT-qPCR)的最常见应用之一是通过对细胞和组织一段时间或事件后(如,药物治疗)实时mRNA水平的定量分析。RT-qPCR比RT-PCR的灵敏度更高,因此,RT-qPCR也常用于检测研究样本中是否存在逆转录病毒(RNA病毒)。与RT-PCR工作流程相似,RT-qPCR首先将RNA转化为cDNA,然后进行PCR扩增。主要区别在于,RT-qPCR在扩增对数期通过荧光法测定扩增cDNA的水平。扩增水平是对RNA中初始靶标进行定量的基础。(了解关于定量PCR的更多信息

Reverse transcriptase's effects on Ct value

Learn about what a Ct value means, which factors can influence Ct values, and how to choose a reverse transcriptase to improve Ct values.

Overcoming RT-qPCR challenges

Learn the top 5 reasons for variations in gene expression analysis by RT-qPCR and tips to overcome common RT mistakes and challenges.

RT-qPCR基因表达定量的准确性在很大程度上取决于cDNA模板的质量和数量。因此,逆转录对于RT-qPCR的成功至关重要。逆转录步骤应产生可代表初始RNA的cDNA产物。因此,所选择的逆转录酶应该具有有效合成cDNA的能力,即使是对低丰度基因以及次优质和/或难转录RNA样本(即富含GC、存在抑制剂或降解RNA样本)。(了解有关逆转录酶属性的更多信息))

除高效逆转录酶之外,在选择逆转录反应试剂方面还需要考虑很多因素。首先,在宽的RNA起始量范围内,cDNA的动态范围或线性扩增是至关重要的。使cDNA得率与RNA起始量成正比,可确保基因表达定量的准确性(图3)。

图3.在总RNA起始量范围内,使用逆转录预混液检测(A)高丰度和(B)低丰度RNA靶标的qPCR线性结果。RNA起始量范围为10 pg至1μg,依次进行逆转录和PCR扩增。两种预混液均产生与RNA起始成比例的cDNA,但是预混液1具有较低(即较早)的Ct值,得率较高,特别是对低丰度基因靶标。

此外,所选试剂在扩增过程中应产生较高且一致的cDNA得率,以获得具有高灵敏度和低变异性的基因表达结果(图4)。单管预混液含有逆转录所需的所有必需组分,有助于将实验变异、交叉污染和移液误差降至最低。(了解有关最佳RT-qPCR逆转录酶的更多信息)

图4.使用不同逆转录预混液检测(A)高丰度和(B)低丰度RNA靶标所得qPCR结果的灵敏度和变异性。在这些试剂中,使用预混液1进行30次重复实验所得结果具有最低的平均Ct值和标准偏差,表明逆转录试剂的选择对于获得可靠的基因表达分析结果非常重要。

RT-qPCR的一个特殊程序是从未经RNA分离的粗细胞裂解物直接进行逆转录[1]。在重点关注稀有细胞或事件的实验中,如使用稀缺样本或选用群体内特定细胞的实验,可考虑使用直接RT-qPCR法来防止可能的样本损失和低RNA回收。在直接RT-qPCR过程中,在细胞裂解过程中抑制可降解RNA的内源性RNA酶和去除细胞基因组DNA是至关重要的步骤。利用优化试剂盒,只需7分钟即可完成样本制备,同时提供来自单个细胞的信号。具有高持续合成能力的逆转录酶具有抑制剂抗性和高灵敏性,特别适用于未纯化RNA提取物的逆转录。

Real-time PCR with cells-to-Ct kits

Learn about how to run real-time PCR without RNA isolation.

了解更多qPCR教育相关产品用于实时荧光定量PCR的第一链cDNA合成试剂盒实时荧光定量PCR试剂

Top

cDNA克隆和文库构建

逆转录酶在分子生物学中的首要应用之一是构建cDNA文库[2-4]。cDNA文库由可代表特定样本中转录序列的cDNA克隆组成。因此,文库提供了关于特定细胞类型、器官或发育阶段的基因时空表达信息。cDNA文库克隆可用于鉴定新型RNA转录物、测定基因序列和重组蛋白的表达。

构建cDNA文库的必要条件是RNA可适当代表其全长和/或相对丰度,因此,逆转录酶的选择非常重要。具有高持续合成能力的逆转录酶可以合成长cDNA,并捕获低丰度RNA。同样,在对具有高度二级结构的RNA进行逆转录时,建议使用热稳定性较强的逆转录酶。(了解关于逆转录特点的更多信息

在逆转录后,有多种方法可以将cDNA插入克隆载体。第二链合成后获得的双链cDNA通常具有钝端,可以克隆到平末端载体中(图5A)。虽然平末端克隆所含步骤较少,但这种方法可能具有较低的插入效率,并导致插入后的方向性丧失。(了解有关克隆工作流程的更多信息

或者,可通过修饰在cDNA末端添加具有已知序列的其他核苷酸。例如,为修饰cDNA的5'末端,可使用具有附加5'核苷酸的oligo(dT)引物启动逆转录;为修饰3'末端,可以连接具有目标序列短DNA寡核苷酸(被称为接头或接头)(图5B)。通过这种方式,可将定向插入位点(如限制性和同源重组)、启动子结合(如,T3和T7序列)和亲和纯化(如,生物素和His标签)轻松整合到cDNA序列中。(了解关于DNA文库构建的更多信息

图5. 常用的cDNA克隆方法。(A)具有平末端的双链cDNA可以直接克隆到平末端克隆载体中。(B)为实现定向克隆,可使用与载体兼容的独特序列修饰cDNA末端。(C)可使用互补末端序列进行无连接克隆,以提高插入效率。(D)若插入序列是已知的,可以考虑通过PCR进行基因特异性克隆。

在另一种常用方法中,使用互补同聚物尾部结构使cDNA插入片段和载体的3'末端酶促延伸。使用末端脱氧核苷酸转移酶(TdT)和单个dNTP,可以在插入片段上添加一串含20-30个核苷酸的序列,并将一串相似的互补核苷酸添加到载体上(如,插入片段上的Cs和载体上的Gs),使载体和插入片段尾部相互退火(图5C)。在转化后,细菌内的间隙被修复,因此不需要连接步骤。

若目标序列是已知的,可通过RT-PCR生成插入片段,用于克隆cDNA的特定区域(图5D)。(了解关于PCR克隆的更多信息

了解更多克隆教学文库构建的必要条件相关产品cDNA文库构建试剂盒克隆试剂克隆载体PCR酶和试剂

Top

cDNA末端快速扩增(RACE)

cDNA末端快速扩增(RACE)是一种基于PCR的方法,可用于确定cDNA 5'和3'末端的未知序列[5]。通常,这些方法分别被称为5' RACE和3' RACE。RACE的实验目标包括鉴定5'和3'非翻译区、研究异质性转录起始位点、表征启动子区域、测定完整cDNA序列以及用于蛋白质表达的完整开放阅读框(ORF)的测序。

使用具有单侧特异性的PCR(也称为单侧或锚定PCR [6,7])扩增cDNA的未知区域,用作RACE产物。5' RACE通过延伸具有寡核苷酸的5'末端进行PCR引物结合,而3'RACE利用mRNA的poly(A)尾部结构作为PCR的通用引物位点(图6)。

图6. 5′和3′ RACE。

在5' RACE(图6A)中,使用基因特异性引物,将特定序列或相关家族的mRNA逆转录到第一链cDNA中。然后,使用末端脱氧核苷酸转移酶(TdT)在cDNA 3'末端添加一个同聚物尾部结构(通常是一串Cs),或将cDNA 3'末端连接到寡核苷酸接头上。随后,进行两轮半嵌套PCR,以扩增具有5'未知序列的区域。PCR还可通过下游应用的引物延长扩增子,如定向克隆的限制性位点引入和用于测序的通用测序引物结合位点。

在3′ RACE(图6B)中,使用具有接头序列的oligo(dT)引物将mRNA逆转录成cDNA。然后,使用已知上游外显子序列的特异性引物和通过oligo(dT)引物引入的接头序列,进行两轮半嵌套PCR。通过这种方式,可对外显子和poly(A)尾部结构之间的未知3´ mRNA序列进行扩增,以用于进一步分析。

起始RNA的质量和逆转录反应的设置对于成功完成RACE实验至关重要。在5'RACE中,任何长度的(甚至包括未到达mRNA 5'末端的)第一链cDNA都将具有添加序列(即同聚物尾部结构或接头),随后通过PCR进行扩增。为了最大化全长cDNA的合成,应选择具有最小RNA酶H活性、高持续合成能力和高热稳定性的逆转录酶。(了解有关逆转录酶特点的更多信息

或者,设计可结合到mRNA 5'末端附近的基因特异性引物,缩短cDNA合成期间与逆转录之间的距离,将有助于捕获未知的5'末端序列。同样,可以考虑在逆转录中选用具有5'-7-甲基鸟苷(7mG)帽子结构的RNA(代表成熟全长真核mRNA)进行程序修饰(图7)[8,9]。

图7. 修饰5'RACE有助于从具有7mG帽子结构的mRNA中捕获序列。首先,使用碱性磷酸酶(AP)从RACE库中去除无帽子结构的RNA,从而去除游离的5'磷酸基团并防止连接。然后,用烟草酸焦磷酸酶(TAP)处理剩余的加帽RNA,去除帽子结构并暴露5'单磷酸盐。然后,将RNA接头连接到暴露的5'磷酸基团,用作5'RACE正向PCR引物的结合位点。

在3'RACE中,全长cDNA并不重要,因为不会扩增PCR起始位点的上游序列。但是,最好选用可生成长cDNA的逆转录酶,因为没有到达PCR引物结合位点的cDNA不会出现在RACE分析中。

了解更多PCR教学相关产品RACE试剂盒PCR酶和试剂DNA寡核苷酸

Top

基因表达芯片

在20世纪90年代,DNA芯片的发展开辟了大规模无偏差或先前假说的基因表达图谱分析。芯片由玻璃或硅晶片上数千个被称为“features”或“spots”的腔室组成。每个腔室的表面上固定有相同拷贝数的单链DNA序列,称为“探针”,每个探针代表一个基因。探针与用于微阵列的荧光标记cDNA靶标杂交,可同时比较两个样本之间的基因表达(图8和9)[10-12]。

图8. 基因表达微阵列芯片

微阵列探针由生物体基因组或cDNA的已知序列生成。例如,可以利用PCR对每个已知基因进行扩增,然后将其产物变性为单链DNA,并将其固定到芯片上作为探针。或者可直接在芯片上合成20-60nt寡核苷酸,作为芯片探针[13]。

图9概述了如何将基因芯片用于不同样本的基因表达分析。首先,从两个实验(也称为“测试”或“处理”)样本和对照(也称为“参考”或“正常”)样本中分离总RNA或mRNA。然后,将纯化的RNA样本转化为cDNA,并用不同的荧光染料标记。接下来,将两个样本的标记cDNA靶标混合,并与一个微阵列芯片上的探针杂交。洗去未结合的靶标,扫描芯片以检测标记的荧光基团。然后,分析两种荧光信号的比例,从而量化受实验条件影响的基因的表达。

图9. 基因表达芯片的cDNA靶标的制备和分析。

cDNA靶标可在逆转录过程中或之后进行标记(图10)。若采用直接标记,则在cDNA合成期间掺入荧光标记的核苷酸。或者若采用间接标记,可使用修饰的核苷酸进行逆转录,然后使用荧光基团标记cDNA。虽然间接方法需要更长的工作流程,但荧光标记往往更高效[14]。

图10.直接和间接cDNA标记。

当RNA起始量较少时(如10-100ng),可以使用T7-oligo(dT)启动子引物将RNA逆转录为双链cDNA。随后,通过体外转录扩增cDNAs(图11)。在体外转录过程中,可以使用修饰的核糖核苷酸直接或间接标记RNA。或者,对扩增的RNA进行逆转录和标记,生成cDNA靶标[15]。

图11. 通过将RNA转化为cDNA并从附加启动子序列进行体外转录,实现RNA扩增。

在选择逆转录酶以制备用于基因芯片实验的cDNA靶标时,获得高产量全长cDNA的能力对于良好覆盖RNA来说至关重要,包括富含GC或具有二级结构的RNA序列。同样重要的是,为确保获得高信噪比,逆转录酶必须能够有效整合修饰的核苷酸,从而能够准确且无偏差地检测输起始RNA。(了解有关逆转录酶属性的更多信息

了解更多基因芯片分析染料标记化学试剂荧光基团选择相关产品基因芯片标记试剂盒荧光染料

Top

RNA测序(RNA-Seq)

RNA测序,又称为RNA-Seq,通常可用于研究从基因组转录的RNA及其调控作用。随着二代测序(NGS)的出现,RNA-Seq已经成为用于分析全转录组(即转录的编码和长非编码RNA)、测定基因表达、发现剪接变异和融合转录物以及检测低丰度基因的的高通量方法[16,17]。与基因芯片相比,RNA-Seq的优点包括动态范围更大、灵敏度更高以及可在无基因组信息的情况下表征RNA序列。

由于大多数测序平台是为DNA设计的,因此,RNA-Seq模板制备需要进行逆转录。最好的结果是所得cDNA能够无偏差代表初始RNA,包括低丰度转录物。全长cDNA合成对于捕获样本中的所有RNA序列也很重要。逆转录的错误率非常关键,其取决于序列文库的大小和数据质量。因此,应认真选择逆转录酶。(了解有关逆转录酶特点的更多信息

研究目标和测序技术将决定RNA-Seq模板制备的顺序和方法[18,19]。生成测序文库的标准工作流程包括富集目标RNA、RNA或cDNA片段化、逆转录、测序接头的添加(在多重测序中,还需添加索引或条形码),以及可选的文库PCR扩增(图12)。

图12. RNA测序的传统工作流程。

为了富集mRNA样本,通常需要从样本中去除构成总RNA约80%的核糖体RNA(rRNA),以改善转录组的测序数据。Poly(A)尾部结构通常存在于真核mRNA和长非编码RNA中,所以具有共价结合oligo(dT)的磁珠成为有效富集这些mRNA的替代方法。相比之下,rRNA去除是富集原核mRNA的优选方法,因为原核mRNA不具有可用于分离的Poly(A)尾部结构。对于小RNA(Benefits of visual feedback during RNA-seq library preparation

Learn how color dyes can help you keep track of RNA sequencing library perpetration steps.

For sequencing analysis, the transcriptome data may be assembled using either a genome-guided or de novo strategy, depending upon availability of the reference genome. The genome-guided approach maps the sequencing results to the known genome sequence, whereas the de novo strategy derives results by contig assembly, which requires extensive computing power [21]. (Learn more about shotgun sequencing)

如本节所述,逆转录是cDNA应用工作流程的组成部分。选择最适合您的研究目标的逆转录方法和酶,对于获得成功的实验结果至关重要。

Learn more Sequencing education Related products RNA sequencing reagentsRNA sequencing library preparation kitsDNA fragment size selection gels

Top

Reverse transcription loop-mediated isothermal amplification (RT-LAMP)

RT-LAMP is a fast, simple, and sensitive solution for RNA and DNA detection, with several methods for evaluating results. Due to its simple workflow and fast reaction time, it is especially useful in field settings for detection and surveillance of viral pathogens.

The LAMP method relies on DNA polymerase with a strong strand-displacement activity, and specifically designed inner and outer primers as well as loop primers. For amplification of RNA targets, a one-step reaction can be carried out by simply adding a reverse transcriptase to a LAMP reaction (RT-LAMP).

LAMP occurs at a constant temperature (60–65°C) and is classified as isothermal amplification. Target RNA or DNA can be amplified in less than 30 minutes. The LAMP technique requires 4 or 6 specially designed primers that bind to two distinct target regions (~300 bp apart). LAMP was originally developed using 4 primers, but subsequent addition of two loop primers reduced reaction time in half. Primers needed for LAMP include two outer (F3 and B3) primers, two inner primers (forward inner primer (FIP) and backward inner primer (BIP), and loop primers (loop forward (Loop F) and loop backward (Loop B).

LAMP occurs in two steps—noncyclic and auto-cyclic. The first step is primer extension from the inner primer (FIP), which hybridizes to the target DNA and starts complementary strand synthesis. This is followed by strand invasion extension from the outer primer (F3), releasing single-stranded DNA that serves as a template for the backward primers. The converted inner sequence forms a stem-loop structure at the F-linked end. The same process is repeated on the other end with BIP and B3 primers, resulting in a dumbbell structure with stem-loops on both the 3′ and 5′ ends as they become complementary to sequences further inwards (enabling the formation of a stem-loop DNA structure). This structure contains multiple sites for repeated amplification initiation and facilitates DNA amplification by auto-cycling, resulting in multiple lengths and cauliflower-like structures of amplified DNA.

Figure 14. Isothermal DNA amplification (simplified)—Primers (3 pairs): FIP/BIP, F3/BIP and Loop FB­. Target sequence important for loop formation; “c” stand for complementary (e.g., F1c is complementary to F1).

Advantages of RT-LAMP Doesn’t require thermal cycler (only heating block)Fast turnaround time (15-60 minutes)Multiple options for detectionSimplified workflowHigher tolerance to inhibitorsAdaptability for field testing

RT-LAMP requires only low quantities of RNA or DNA, is tolerant of inhibitors, and offers easy handling as well as good specificity and sensitivity. Amplification under isothermal conditions removes the need for a thermal cycler and offers higher amplification efficiency, as there is no need to wait for temperature changes. Because of these qualities, LAMP technology has undergone exponential growth in its applications since its discovery. RT-LAMP is used in laboratories for faster detection of pathogens (bacteria, parasites, and viruses). Due to its simplicity, it is also a key method for adaptability to field or point-of-care settings. RT-LAMP is also an ideal solution for pandemic conditions, because it requires only simple equipment yet provides specificity and immediate evaluation of results. This means surveillance can be performed in nonstandard settings such as testing centers, airports, schools, etc. As RT-LAMP advances, it could be made into multiplex assays, mobile biosensors, or portable lateral flow assays. It can also be applied in the early detection of genetic diseases. Furthermore, to increase RT-LAMP sensitivity and specificity, technologies that combine RT-LAMP and CRISPR, and similar, are emerging, opening additional opportunities for new applications. Overall, the advantages offered by RT-LAMP have potential for development of testing on site, in the field, or in diagnostic settings.

Learn more 了解更多测序教学RNA测序 Related products 相关产品RNA测序试剂RNA测序样本制备DNA片段大小筛选凝胶

Top

参考文献 Svec D, Andersson D, Pekny M et al. (2013) Direct cell lysis for single-cell gene expression profiling. Front Oncol 3:274. Okayama, H, Berg P (1982) High-efficiency cloning of full-length cDNA. Mol Cell Biol 2(2):161–170. Gubler, U, Hoffman BJ (1983) A simple and very efficient method for generating cDNA libraries. Gene 25(2-3):263–269. Harbers M (2008) The current status of cDNA cloning. Genomics 91(3):232–242. Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A 85(23):8998–9002. Ohara O, Dorit RL, Gilbert W (1989) One-sided polymerase chain reaction: the amplification of cDNA. Proc Natl Acad Sci U S A 86(15):5673–5677. Loh EY, Elliott JF, Cwirla S (1989) Polymerase chain reaction with single-sided specificity: analysis of T cell receptor delta chain. Science 243(4888):217–220. Maruyama K, Sugano S (1994) Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138(1-2):171–174. Schaefer BC (1995) Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal Biochem 227(2):255–273. Schena M, Shalon D, Davis RW et al. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470. Duggan DJ, Bittner M, Chen Y et al. (1999) Expression profiling using cDNA microarrays. Nat Genet 21(1 Suppl):10–14. Capaldi AP (2010) Analysis of gene function using DNA microarrays. Methods Enzymol 470:3–17. McGall GH, Christians FC (2002) High-density genechip oligonucleotide probe arrays. Adv Biochem Eng Biotechnol 77:21–42. Invitrogen Corp. (2003) Microarray target labeling you can trust. (Brochure) Invitrogen Corp. (2004) Comprehensive solutions for microarray analysis. (Brochure) Mortazavi A, Williams BA, McCue K et al. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Rev Genetics 10(1):57–63. van Dijk EL, Jaszczyszyn Y, Thermes C (2014) Library preparation methods for next-generation sequencing: tone down the bias. Exp Cell Res 322(1):12–20. Hrdlickova R, Toloue M, Tian B (2016) RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA. doi: 10.1002/wrna.1364. [Epub ahead of print] Levin JZ, Yassour M, Adiconis X et al. (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 7(9):709–715. Kukurba KR, Montgomery SB (2015) RNA Sequencing and Analysis. Cold Spring Harb Protoc 2015(11):951–969. Svec D, Andersson D, Pekny M et al. (2013) Direct cell lysis for single-cell gene expression profiling. Front Oncol 3:274.Okayama, H, Berg P (1982) High-efficiency cloning of full-length cDNA. Mol Cell Biol 2(2):161–170.Gubler, U, Hoffman BJ (1983) A simple and very efficient method for generating cDNA libraries. Gene 25(2-3):263–269.Harbers M (2008) The current status of cDNA cloning. Genomics 91(3):232–242.Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A 85(23):8998–9002.Ohara O, Dorit RL, Gilbert W (1989) One-sided polymerase chain reaction: the amplification of cDNA. Proc Natl Acad Sci U S A 86(15):5673–5677.Loh EY, Elliott JF, Cwirla S (1989) Polymerase chain reaction with single-sided specificity: analysis of T cell receptor delta chain. Science 243(4888):217–220.Maruyama K, Sugano S (1994) Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138(1-2):171–174.Schaefer BC (1995) Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal Biochem 227(2):255–273.Schena M, Shalon D, Davis RW et al. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470.Duggan DJ, Bittner M, Chen Y et al. (1999) Expression profiling using cDNA microarrays. Nat Genet 21(1 Suppl):10–14.Capaldi AP (2010) Analysis of gene function using DNA microarrays. Methods Enzymol 470:3–17.McGall GH, Christians FC (2002) High-density genechip oligonucleotide probe arrays. Adv Biochem Eng Biotechnol 77:21–42.Invitrogen Corp. (2003) Microarray target labeling you can trust. (Brochure)Invitrogen Corp. (2004) Comprehensive solutions for microarray analysis. (Brochure)Mortazavi A, Williams BA, McCue K et al. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628.Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Rev Genetics 10(1):57–63.van Dijk EL, Jaszczyszyn Y, Thermes C (2014) Library preparation methods for next-generation sequencing: tone down the bias. Exp Cell Res 322(1):12–20.Hrdlickova R, Toloue M, Tian B (2016) RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA. doi: 10.1002/wrna.1364. [Epub ahead of print]Levin JZ, Yassour M, Adiconis X et al. (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 7(9):709–715.Kukurba KR, Montgomery SB (2015) RNA Sequencing and Analysis. Cold Spring Harb Protoc 2015(11):951–969.Share 


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3