bspline模型

您所在的位置:网站首页 BSM模型假设条件 bspline模型

bspline模型

2023-04-06 10:33| 来源: 网络整理| 查看: 265

本文目录一览:

1、有限元法有什么特点和优势 2、什么是b样条曲线 3、cappa 2011 b spline 4、AutoCAD里面曲面模型跟实体模型有什么区别? 5、B-splines。B样条曲线是什么东西?用在什么地方 有限元法有什么特点和优势

一、有限元法的特点:

1、把连续体划分成有限个单元,把单元的交界结点(节点)作为离散点;

2、不考虑微分方程,而从单元本身特点进行研究。

3、理论基础简明,物理概念清晰,且可在不同的水平上建立起对该法的理解。

4、具有灵活性和适用性,适应性强。它可以把形状不同、性质不同的单元组集起来求解,故特别适用于求解由不同构件组合的结构,应用范围极为广泛。

它不仅能成功地处理如应力分析中的非均匀材料、各向异性材料、非线性应力、应变以及复杂的边界条件等问题,且随着其理论基础和方法的逐步完善,还能成功地用来求解如热传导、流体力学及电磁场领域的许多问题。

5、在具体推导运算过程中,广泛采用了矩阵方法。

二、有限元法的优点

1、物理概念浅显清晰,易于掌握。有限元法不仅可以通过非常直观的物理解释来被掌握,而且可以通过数学理论严谨的分析掌握方法的本质。

2、描述简单,利于推广。有限元法由于采用了矩阵的表达形式,从而可以非常简单的描述问题,使求解问题的方法规范化,便于编制计算机程序,并且充分利用了计算机的高速运算和大量存储功能。

3、方法优越。对于存在非常复杂的因素组合时候,比如不均匀的材料特性、任意的边界条件、复杂的几何形状等混杂在一起的时候,有限元法都能灵活的处理和求解。

4、应用范围广。有限元法不仅能解决结构力学,弹性力学中的各种问题,而且随着其理论基础与方法的逐步改进与成熟,还可以广泛地用来求解热传导、流体力学及电磁场等其他领域的诸多问题。不仅如此,在所有连续介质问题和场问题中,有限元法都得到了很好的应用。

扩展资料:

有限元方法的核心思想

有限元法(Finite Element Method)是基于近代计算机的快速发展而发展起来的一种近似数值方法,用来解决力学,数学中的带有特定边界条件的偏微分方程问题(PDE)。而这些偏微分方程是工程实践中常见的固体力学和流体力学问题的基础。

有限元和计算机发展共同构成了现代计算力学 (Computational Mechanics)的基础。有限元法的核心思想是“数值近似”和“离散化”, 所以它在历史上的发展也是围绕着这两个点进行的。

1、“数值近似”

由于在有限元法被发明之前,所有的力学问题和工程问题中出现的偏微分方程只能依靠单纯的解析解(Analytical Solution)得到解答。这种方法对数学要求很高,而且非常依赖于一些理想化的假定(Assumption)。

比如在土木工程中梁柱计算中出现的平截面假定,小应变假定,理想塑性假定。这些假定其实是和实际工程问题有很大偏差的,而且一旦工程问题稍微复杂一些我们就不能直接得到解析解,或者解析解的答案误差过大。

而有限元法把复杂的整体结构离散到有限个单元(Finite Element),再把这种理想化的假定和力学控制方程施加于结构内部的每一个单元,然后通过单元分析组装得到结构总刚度方程,再通过边界条件和其他约束解得结构总反应。

总结构内部每个单元的反应可以随后通过总反应的一一映射得到,这样就可以避免直接建立复杂结构的力学和数学模型了。其总过程可以描述为:

总结构离散化 — 单元力学分析 — 单元组装 — 总结构分析 — 施加边界条件 — 得到结构总反应 — 结构内部某单元的反应分析

在进行单元分析和单元内部反应分析的时候,形函数插值(shape function interpolation)和 高斯数值积分(Gaussian Quadrature)被用来近似表达单元内部任意一点的反应,这就是有限元数值近似的重要体现。

一般来说,形函数阶数越高,近似精度也就越高,但其要求的单元控制点数量和高斯积分点数量也更多。另外单元划分的越精细,其近似结果也更加精确。但是以上两种提高有限元精度的代价就是计算量几何倍数增加。

为了提高数值近似精度同时尽量较少地提高计算量,有限元法经历了很多发展和改良。下图就是一典型的有限元问题,因为模型中间空洞部分几何不规则性,结构用有限三角单元划分。

由于在靠外区域,结构反应变化程度不是很大,因此划分的单元比较大和粗糙,而在内部,应力变化比较大,划分也比较精细。而在左边单元划分最密区域,有应力集中现象(如裂纹问题的奇异解现象),所以又有相应的高级理论(比如non-local theory)来指导这部分的单元应力应变计算。

结构被选择性地离散,和高级理论构成了有限元发展的主要研究方向。

2.、“离散化”

离散化和相应单元特性和收敛研究也是有限元中一个重要研究领域,总的来说,有限单元和他们组装成的总体结构主要分为:

1-D 单元 (1-D element) 杆单元 (bar element) ------ 桁架 (truss) 梁单元 (beam element) ------ 框架 (frame) 板单元 (plate element) ------ 壳体 (shell)

2-D单元 (2-D element) ------ 平面应力体 (plain stress) 和 平面应变体 (plain strain) 三角单元 (triangle element) 四边形单元 (quadrilateral element) 多边形单元 (polygonal element)

3-D 单元 (3-D element) ----- 立体结构 (3-D problem) 三角体 (tetrahedrons element) 立方体单元 (hexahedrons element) 多边体单元 (polyhedrons element)

具体的分类和单元形状见下图

可以看到每种单元又可以提高形函数的阶数(控制点 node 数量)来提高精度。很多有限元研究也集中在这个领域。

比如研究新的单元引用于结构动力反应以减小数值震荡,比如用3-D单元去模拟梁单元等等。其实理论上来说这个领域可以有无限可能,因为对精度和数值稳定的追求可以是无限的。

3、 “光滑边界” 和 与CAD的交互问题

其实这个算不上有限元的核心思想,不过是现在有限元研究热的不能再热的领域了,就是Hughes提出的“NURBS”有限元法,它的原理是用空间样条曲线来划分单元。

如第一幅图所示,传统的有限元在处理不规则边界的时候一般都是较多的单元和用三角单元,多边形单元来解决,而且单元控制点都是和单元在一个平面上。

而NURBS 单元的控制点脱离了单元本身,并且利用B-spline理论上可以把单元的光滑程度(continuity)提高到无限,而且不会显著提高计算量。

发展NURBS的另外一个好处是,在建模中常用的CAD软件是用B-spline来进行模型建立基础的,而NURBS 正好也是用用B-spline作为basis。

所以CAD和NURBS的交互可以非常简单和高效的,甚至可以说是无缝连接。因此在工业界中十分复杂的模型都可以用CAD进行建模,再用NURBS进行有限元计算,如下图。

现在成吨的有限元paper都来自这个领域,因为有限元的基本理论基本已经成熟和robust,利用高性能计算机进行大尺度(large-scale)和高复杂结构模拟也是有限元发展的一个主要方向。

参考资料:百度百科“有限元法”

什么是b样条曲线

在数学的子学科数值分析里,B-样条是样条曲线一种特殊的表示形式。它是B-样条基曲线的线性组合。B-样条是贝兹曲线的一种一般化,可以进一步推广为非均匀有理B样条(NURBS),使得我们能给更多一般的几何体建造精确的模型。 定义给定m+1 个节点ti ,分布在[0,1]区间,满足 一个n次B样条是一个参数曲线: 它由n次B样条基(basis B-spline)组成. Pi称为控制点或de Boor点. 多边形可以通过把de Boor点用线连起来构造出来,从P0开始,到Pn结束。这样的多边形称为de Boor多边形. m+1个n次B样条基可以用Cox-de Boor递归公式 定义 当节点等距,称B样条为均匀(uniform)否则为非均匀(non-uniform)。 [编辑] 均匀B样条 当B样条是均匀的时候,对于给定的n,每个B样条基是其他基的平移拷贝而已。一个可以作为替代的非递归定义是满足满足其中(ti t) + 是截断幂函数(truncated power function)

cappa 2011 b spline

空间环境异质性是现场森林遗传试验的公知特征,即使在似乎均匀的条件和密集的场所管理下建立的小实验(1ha)中。在这样的试验中,通常假设任何简单类型的基于随机化理论的实验场设计作为完全随机设计(CRD),应该考虑任何小的位点变异性。然而,大多数已公布的结果表明,在这些类型的试验中存在通常存在于误差项中的空间变化的大分量。在这里我们应用 二维平滑表面在单树混合模型 中,使用 线性,二次和三次B样条基数与行和列的不同和相等数目的结的张量积 ,以说明环境空间变异性两个相对较小(即576平方米和5,705平方米)森林遗传试验,具有大型多树连续地块构造。一般来说, 考虑具有二维表面的位点变异性的模型显示偏离信息标准的值比经典RCD低 。当相对少量的信息可用时, 线性B样条基可以产生对环境变异性的合理描述 。 拟合平滑表面的混合模型导致误差方差(ƒƒ2e)的后验均值的减少,加性遗传方差(χ2a)和遗传力(h2HT)的后验均值的增加,增加了16.05% 46.03%(对于亲本)或11.86%和44.68%(对于后代)的育种值的精确性 。

空间环境异质性是现场森林遗传试验的公知特征(例如,DUTKOWSKI等人,2006; ZAS,2006; CAPPA和CANTET,2007; YE和JAYAWICKRAMA,2008; FINLEY等人,2009)。即使在似乎均匀的条件和强烈的场地管理下建立的小实验(1ha)也是如此(WOODS等,1995; SAENZ-ROMERO等,2001; JOYCE等,2002)。在这样的试验中,通常假定位点变异性的量(幅度和方向)最小,在实验单元(即,地块,树木或植物)中仅存在小的随机微位点变化。虽然完全随机设计(CRD)通常被认为足以揭示研究的变异来源之间的重要差异(LOO-DINKINS 1992),但在大多数情况下,存在于“误差项”中的变异量可能相当高EL-KASSABY和PARK,1993; REHFELDT,1995; KRAKOWSKI等,2005; ST.COLIR,2006)。虽然CRD的主要优点是更容易建立,但其分析的简单性,这种简单的实验设计不太可能解释大多数环境变化。为了减少环境变率的影响,统计学家,作物和树种育种者设计或采用了更有效的实验布局。随机完全块(RCB)或不完全块设计,试图先验地将站点的异质性分为均匀块。然而,设置这样的假设通常是不现实的或弱的,因为在同一块内进行的两个最远距离测量应当在理论上共享相同的方差,而两个块的边界上的相邻树的两个近距离测量被假定为随不同的幅度变化。这种差异的大小随着实验的大小的增加而增加。解决这个问题的一个策略是通过考虑实验的期望功率并将大小限制到最小来最小化实验的大小。不幸的是,在大多数情况下,即使在最有效的实验布局下,空间异质性在建立阶段是未知的,并且仅在评估阶段显露。因此,有必要在评价模型内对这种变异性进行后验建模。

空间模型允许通过包括两个主要部分来建模场地异质性;即“局部趋势”或小规模和“全球趋势”或大规模变化(GRONDONA等,1996)。已经开发了若干前后方法并应用于森林遗传试验以更准确地说明位点异质性。小规模空间异质性的影响通常通过将随机空间相关结构包括在模型中来解释。这样的残差矩阵被表示为行和列的一阶自回归残差的Kro-necker积(GILMOUR等人,1997)。此外,在森林遗传和其他试验中,小尺度空间变异性已用最近邻技术建模(MAGNUSSEN,1990; ANEKONDA和LIBBY,1996; JOYCE等,2002; KROON等,2008 )或克里金(HAMANN等人,2002; ZAS,2006)。解释了大规模连续空间变化的一些方法已经通过后阻塞来建模(ERICSSON,1997; LOPEZ等,2002; GEZAN等,2006; KROON等,2008) (THOMSON和EL-KASSABY,1988; FEDERER,1998; SAENZ-ROMERO等,2001)或协变量或平滑样条函数(GILMOUR等人,1997; VERBY- LA等人,1999)。 GILMOUR at al。 (1997),在农业三年,和COSTA eSILVA等。 (2001)和DUTKOWSKI et al。 (2002)在林木场实验中,推荐通过固定或随机分类变量拟合可分离的二维自回归残差和一维的大规模变化(全局)来建模小规模变化(COSTA e SILVA et al。 2001),或包括空间坐标的固定效应作为多项式或三次平滑样条(DUTKOWSKI等人,2002)。然而,全球趋势加自回归残差的拟合没有成功或产生很少或没有改善,因此DUTKOWSKI等人(2006)建议保留空间模型中的设计项。此外,全局趋势的大部分通常存在于二维中,并且在一维中存在非随机函数,例如多项式(FEDER-ER,1998)或三次平滑样条(VERBYLA等,1999)解释空间协方差。此外,极其罕见的是,仅在行或列的方向上发现大规模连续空间变异性,并且必须考虑行和列之间的某种相互作用以考虑这种变化性(FEDERER, 1998)。为此,FEDERER(1998)提出了在行和列的多项式之间拟合相互作用。然而,当在极端拟合观察时,多项式做的不好;即极端观测在估计的参数中具有大的影响,并且对于更高次的多项式尤其如此。

花样作为多项式的替代方法,也被用于处理环境异质性(CAPPA和CANTET,2007)。样条是来自较低次多项式的段的分段多项式函数(GREEN和SILVERMAN,1994)。段连接的位置称为节点。样条能够以复杂的变化模式捕获数据中存在的大部分蜿蜒,而不会受到数值不稳定性的影响。特定类型的样条是“基本样条”(B样条),其是局部基函数,由通常为线性,二次或立方的度为d的多项式段组成,在连接点处具有d-1个连续导数,或结。 EILERS和MARX(1996)提出了在一个维度上具有等间距结的惩罚样条(P样条),引入影响B样条参数的第一或第二差异的惩罚。罚分控制拟合函数时的平滑度。 EILERS和MARX(2003)扩展了它们的方法,使用B样条的张量积来估计二维表面。应用于一个或两个维度(EILERS和MARX,1996; 2003),B样条函数的参数被视为固定效应;然而,样条与混合模型密切相关(RUPPERT et al。,2003; WAND,2003)。在最近的一项研究中,CAPPA和CANTET(2007)提出使用基于混合模型框架的三次B样条的张量积,将B样条函数参数作为随机变量进行处理(即,使用协方差结构随机结效应)在二维网格中。他们表明,该方法可以解释大规模连续空间变化的个别试验的森林遗传评价,使用贝叶斯技术通过吉布斯抽样,以推断模型的所有色散参数。 CAPPA等人(未出版)扩展了CAPPA和CANTET(2007)的方法,证明其在适应西方铁杉(Tsuga heterophylla(Raf。)Sarg。)的几个大型森林遗传学试验的空间异质性的复杂模式中的应用,树图设计。他们建模了不同的空间变异模式,包括:a)小规模变化,b)小规模变化以及一维(即横跨行或列)的大规模变化,以及c)小规模变化,两个维度(即,横跨行和列)的大规模变化。新的二维表面与“重复组”和不完全块“先验”设计相比,将十个位点的后验均值减少了3.4至48.2%。这导致h2的后验平均值从25.0增加到76.7%,并且对于亲本和后代育种值估计的精确度增加高达3.2%。

不管在大型试验中实施的改进,B样条基的张量乘积对解释空间变异性的性能是未知的,具有有限的信息(即,更少数量的数据点,在行和列中,两个 - 可以估计尺寸表面)。使用两个不同的实验数据集的本研究的目的是研究使用B样条的张量积来表示相对较小(例如,576m 2和5,705m 2)的空间变化的表面拟合的效用,最先进的基因试验,具有先验简单的CRD和大的多树连续图配置。此外,我们扩展CAPPA和CANTET(2007)单树混合模型,使用立方B样条的张量乘积到单个树混合模型,其中线性,二次和三次B样条的张量乘积具有不同的节数行和列来模拟空间异质性。将包括拟合表面的混合模型的所有色散参数的所得到的估计最终与具有包括图到图的环境效应的单树模型的经典CRD分析的相应估计进行比较。

对两个数据集评估了几个单树添加模型。所有模型,包括总平均值的固定效应,具有协方差矩阵A 2 a的正态分布随机添加遗传效应(a,育种值),A是所有树中的附加关系矩阵(HENDERSON,1984)遗传方差(σ2a)和具有平均零和方差σ2e的正态分布随机误差(e)。经典的个体树模型还包括一个正态分布的随机效应项(p),均值为零,方差为σ2p。在其他模型中,为了解释空间变异性,根据CAPPA和CANTET(2007),我们使用线性,二次和三次B的张量积将古典模型扩展为具有二维表面的单树混合模型-splines。令Y是分别包含西部落叶松和苏格兰松树试验的HT的树个体观察值的行(R = 110)×列(C = 60或75)的顺序矩阵。为了将Y转换为向量,我们使用'vec'运算符(HARVILLE,1997;第339页),其中n(或R x C)x 1向量y是从Y:y = vec 。然后,在矩阵符号中,每个单树混合模型,具有平滑的表面以考虑空间变异性,可以被描述为

y = + Bb + Zaa + e [1]

其中B具有尺寸nx(nxr =行的节数x nxc =列的节数),并且等于B =(Br ?1'nxc)#(1'nxr ?Bc),Bi(i = r或c)是包含以线性,二次或三次B样条基表示每行和每列所需的d + 1个非零B样条基的n×nxi阶矩阵。因此,为了在Bi(i = r或c)中表示作为B样条基函数的一行(或列),需要2个线性B样条基,或3个二次B样条基,或4个立方B-样条基,样条基。使用DE BOOR(1993)的递归算法进行Bi(i = r或c)系数的计算。符号?和#分别表示矩阵的Kronecker和Hadamard乘积(HARVILLE,1997)。阶数(n×r×n×c)×1的参数向量b包含B样条的张量乘积的参数(即随机结效应,RKE)。随机向量b的分布使得b〜N(0,U≥2b)。标量α2 b是行和列的RKE的方差,阶数U(nxr x nxc)x(nxr x nxc)是B样条节的两个维数的协方差结构。在本研究中,我们选择由GREEN和SILVERMAN(1994;第13页)最初提出的三对角矩阵,然后由DURBAN等人使用。 (2001)以适应生育趋势。在CAPPA和CANTET(2007)中可以找到使用具有相等行数和列数的立方体B样条的张量积的二维表面(Bb)的更详细的解释。

具有适用于西部落叶松和苏格兰松数据集的平滑表面(模型1)的单树混合模型的序列在行和列的节数以及基函数的拟合程度上不同。使用由M.WAND(参见RUPPERT,2002)建议的标准大约选择最小结节数,该标准选择每t次观察和t = min(r / 4(或c / 4),35)设置结。因此,对于西部落叶松和苏格兰松数据集,分别指定用于行的高达3节和4节以及用于列的高达2节和4节。线性(L),二次(Q)和三次(C)多项式段,即度数d = 1,2和3的基函数是供体。如在P-样条方法中,选择在行和列上相等间隔的结。

残差的空间分析为了识别两个数据集中的空间模式,我们使用具有固定总平均值和随机的模型,检查了绘图平均值的残差的空间分布(即,来自给定家族图的所有树的平均值)家庭效应。应该注意的是,在这种情况下,由于两个试验中的家族的半同胞结构(不包括大批果园批次),所得到的残差仍然包含3/4的加性遗传方差。 HT残差的空间分布如图1a所示,其中颜色强度代表图中残差的大小:点越暗,残差越大(注意,图中的残差不是随机分布的,在两个实验领域)。此外,存在明显的证据表明在行或列上存在一些不同的残差图案,其指示在行和列位置之间的相互作用的存在以及对二维平滑的需要。

贝叶斯推理和模型比较通过Gibbs采样的贝叶斯方法用于估计古典单树模型和所有具有平滑表面的模型[1]中的参数,遵循CAPPA和CANTET(2007)。对于所有参数选择共轭先验密度。为了反映固定效应的不确定性的先前状态,同时保持后验分布适当,我们选择? 〜Np(0,K),其中K是具有大元素的对角矩阵(kii 108)。对于θ2p,θ2 b,θ2a和θ2 e的先验分布,我们使用具有赫泊尔(hipervariances)2p,β2b,α2a和α2e的缩放反相卡方和自由度ρp, b,θa和θe。因此,关节和条件后验密度对于α,p,b和a是高斯的,对于α2 p,β2 b,α2α和α2 e是缩放的卡方。

在每次迭代结束时,对于经典的个体树模型,将HT的个体树狭义遗传率计算为h 2 HT,一个/? a +? p +? e,其中〜2〜2〜2〜一个, ? p,? e是在给定迭代下采样的加法,图和误差〜2〜2〜2方差的值。对于具有平滑表面(模型1)的每个单树混合模型,h2HT被计算为h2HT =一个/? a +? e。 〜2〜2〜2绘制了一条10,10,000个样品的单个吉布斯链,并且前10,000次迭代作为老化被丢弃。另外100万个样本用于计算边缘后分布的总结。通过高斯核方法(SILVER-MAN,1986;第2章)估计所有参数的边际后密度。使用“Bayesian OutputAnálisis”(BOA版本1.0.1; SMITH,2003)对于从1到50的所有滞后计算自相关。平均值,模式,中值,标准偏差和95%高后密度区间(95%HPD)然后用自由软件R(http: //- project.org/ )下的个体边际后代的所有参数用BOA计算。

计算偏差信息准则(DIC; SPIEGEL-HALTER等,2002)以比较每个模型的拟合。 DIC标准被定义为其中D - (ΔM)是偏差的后验平均值,pD是“有效参数数量”。因此,DIC将模型拟合度(D - (ΔM))与模型复杂度(pD)的测量结合起来。较小的DIC值表示更好的拟合和较低的模型复杂度。

在CAPPA和CANTET(2006)中给出了在多特征个体树模型中计算DIC的数值细节。通过残差的空间模式和得到的估计表面之间的视觉比较提供了附加模型比较。最后,使用以下表达式计算育种值预测的准确度:其中PEV表示使用“最佳线性无偏预测因子”(BLUP)的预测育种值的“预测误差方差”(HEN-DERSON,1984)的父母和子女。还计算使用SAS的PROC CORR的Spearman秩相关,以比较在具有绘图至绘图环境效应的经典单树模型与具有二维表面的最佳单树模型之间预测育种值的排名是否不同。

未考虑森林遗传试验的空间变异性导致估计遗传参数和预测育种值的偏差(Magnussen 1993,1994),因此选择的精确性降低,从而降低遗传增益 。在当前的研究中, 我们展示了如何使用B样条基的张量积,通过混合模型在Eilers和Marx的P样条的精神中拟合二维表面(1996,2003 ) 。通过贝叶斯方法也获得了二维中的P-样条,如Lang和Brezger(2004)所示。这些作者将差异矩阵3视为一阶或二阶随机游走。我们的方法不同于他们在差异3的奇异矩阵通过在两个维度中的RKE的适当方差 - 协方差矩阵的替换。在这样做时, 我们将B样条基的张量积扩展为单树混合模型,以解释大规模连续空间变异性。因此,模型包含沿着列和行的方向平滑的表面 。 Gilmour at al。 (1997)通过拟合多项式或三次平滑样条来模拟农业试验的一个维度的大规模变化 。然而,在树木种植在正方形或矩形的森林遗传试验中,全球趋势的很大一部分通常存在于两个方面。此外,非常罕见的是,仅在行或列的方向上发现大规模连续的空间变异性,并且必须考虑行和列之间的某种相互作用以解释这种变异性(Federer 1998 )。虽然存在几种平滑的统计方法来捕获一维的变化的非近似性,但是二维中的方法不太丰富。为了这个目的,Federer(1998)提出了 行和列的多项式之间的拟合相互作用 。然而,当在极值拟合观察值时,多项式的工作做得很差。此外,数据的小变化在参数的估计值中产生显着的效果,并且对于更高级的多项式尤其如此。另外,应该选择多项式的范围,这反过来引入模型选择的问题。相反,我们提出使用P样条估计平滑表面。该方法是灵活的,因为 B样条函数对数据是局部敏感的,并且在数字上有很好的条件 。方差σ2 b用于平滑行和列的效果。在Eilers和Marx(2003)和Lang和Brezger(2004)的方法中,使用了行和列的不同方差。 Lang和Brezger(2004)进一步使用了分散参数的局部自适应估计。在未来的研究中,我们可以考虑平滑具有不同色散参数的行和列,尽管我们不清楚这种方法对于拟合的质量(即DIC的值)可能比我们更有利。 Eilers和Marx的P样条方法(1996,2003)包括使用具有等间距结的立方体B样条。在这种方法中,关键参数是惩罚或平滑因子? (见方程2和5),并且样条中的结的数量对于拟合是不重要的,只要有“足够”多的(Eilers和Marx 1996; Cantet等人2005)。在P样条的混合模型方法中,?是等式2中的比率α2e=α2b(Cantet等人2005)。从表1可以看出,与其他方差分量相比,α2b(α的分母)的大小对结的数量敏感。已知的是,非常少的结的拟合产生偏差,其随着结的数量的增加而迅速减小(Ruppert 2002)。一旦达到最小数目,增加结的数目给出令人满意的拟合(Ruppert 2002)。 Cantet et al。 (2005)发现,对于具有20,40,60,80或120个等间距结的模型,改进的Akaike信息标准的值几乎相等。然而,方差分量的受限最大似然估计对于120节的某些模型没有收敛。对于达到120节的收敛的情况,对于没有记录数据的间隔的拟合存在一些不一致。可以得出结论,除了极端量之外,结的数量不是关键的,并且通常有几个结数产生类似的拟合并产生方差分量的类似估计。在当前的研究中,将节数从18减少到8产生了更平滑的表面(图3)。虽然模型用12? 12节显示的DIC最小,DIC之间的差异在12个模型之间? 12和18? 18节很小。这也适用于从两个模型获得的h2DBH的估计:第三个小数位的差异。在P样条的混合模型方法中,RKE的协方差结构代替了方程中差异的任何奇异矩阵。在本研究中,Durban等人提出的三对角矩阵(2001)被选择来建模RKE之间的列和行的协方差。该公式比Cantet等人使用的密集相关结构更简单。 (2005)和Hyndman et al。 (2005),其中在所有RKE中存在完全依赖性。后者的协方差结构具有比Durban等人使用的更大的DIC。 (2001),如题为分析模型一节所述。然而,对于α2a(3.668,3.753和3.754),对于σ2e(10.994,10.76和10.275)和对于h2DBH(0.250,0.258和0.267),从具有协方差的模型结构使用Cantet等。 (2005),Hyndman et al。 (2005),和Durban et al。 (2001)。另一方面,来自这三种模型的β2b的估计值是非常不同的:11.931,1.611和22.317。这与Cantet等人获得的结果一致。 (2005)。在分析育种数据时,有一些使用B样条函数的一些例子。因此,动物育种者使用样条来模拟功能育种值(White等人1999; Bohmanova等人2005)或管理单位和时间的影响(Cantet等人2005)。在森林遗传育种中,Cornillon et al。 (2003)使用固定效应模型使用B-样条模型桉树克隆的时间功能育种值。 Magnussen和Yanchuk(1994)将样条函数拟合为观测数据,以便估计来自道格拉斯杉木的非记录时间的个体高度。然后将得到的数据用于预测非记录年龄的育种值和遗传分布参数。平滑表面的拟合对子球体试验在E. globulus subsp。球状体与B样条的张量乘积而不是先验块设计一致地增加了Δ2A和h2DBH的后验均值(表1)。结果与Zas(2006)的结果一致,Zas(2006)使用克里金法计算空间变异性,并且与Dutkowski等人的不同。 (2002,2006)。在后一种情况下,在调整AR(1)之后获得Δ2A的不一致估计。 AR(1)协方差结构到模型的残差。在我们的数据中,空间模型产生的估计的精度的增加,可以注意到在低得多的标准偏差和95%高后验概率密度间隔的较窄的值,当与估计从具有块的模型(表1)。此外,用空间模型计算的来自亲本和后代的育种值的准确度高于从具有块效应的模型估计的对应值(表2),这是由于估计的加性方差的增加和估计误差的降低方差(表1)。当与随机完全区块设计进行比较时,Costa e Silva等报道了空间模型的精度提高。 (2001)的树高和Zas(2006)的树径。 Costa e Silva et al。 (2001)分析了12项试验,发现父母和后代的预测加性效应的精确度提高了71%。此外,Zas(2006)报告了校正空间相关变异后,BLUP的家庭效应的准确性显着增加,从0.40-0.63增加到0.72-0.79。 Dutkowski等人发现精度的增益较小。 (2002,2006) ,但仍然在空间模型的方向与模型的块。准确度增益的很大一部分是由于以下事实: 并非所有的空间变异性都通过使用块设计(Singh等人2003)的变异性来解释为块间变异性,否则其将变为误差方差 。因此,与使用模型的分析相比,显示大规模连续空间变化的数据分析(例如由可变深度的石油层引起的数据)通过空间模型将很可能提高选择的准确性。块。在当前的研究中,我们使用具有平滑表面的单树混合模型,模拟沿着站点的连续和永久的空间变异性。在森林遗传评价中,微地点水平的空间变异用最近邻的技术建模(Magnussen 1990; Costa e Silva et al.2001; Dutkowski et al.2002)或用克里金法(Hamann et al.2002 ; Zas 2006)。然而, 植物间竞争可能是影响邻居之间相关性的小规模空间变异的另一个来源 (Magnussen 1994)。混合模型6不考虑树木之间的遗传竞争,这可以偏向σ2A的估计(Cappa和Cantet 2007)。

然而,分析中使用的树龄为6岁,因此竞争不强或不存在。对于在竞争效应相当大的年龄测量树木的情况,最好同时适应连续的空间变异和竞争的遗传效应。更重要的是,值得将本研究所提出的方法与其他空间技术通过计算机模拟进行比较,这是未来研究的主题。

AutoCAD里面曲面模型跟实体模型有什么区别?

AUTOCAD中曲面建模不同于实体建模,曲面不是完全参数化的特征,变化很大。而实体模型是完全参数化的模型,是由完全约束的尺寸控制的。

CAD曲面建模也称为NURBS建模,NURBS是Non-Uniform

Rational

B-Splines的缩写,是“非统一均分有理性B样条”的意思。具体解释是:.Non-Uniform(非统一)——是指一个控制顶点的影响力的范围能够改变。当创建一个不规则曲面的时候这一点非常有用。同样,统一的曲线和曲面在透视投影下也不是无变化的,对于交互的3D建模来说这是一个严重的缺陷;Rational(有理)——是指每个NURBS物体都可以用数学表达式来定义;B-Spline(B样条)——是指用路线来构建一条曲线,在一个或更多的点之间以内插值替换的。

CAD实体模型是一个三维的三角网数据。通常定义实体模型是在三角形所确定三个数据点数据的基础上,由一组通过空间位置,在不同平面内的线相互连接而成的。实体模型是建立三维模型的基础。例如:一个实体模型可能是通过周围穿过实体的剖面线形成的。实体模型是由线串上包含的点形成的一系列的三角形创建的。这些三角形在平面视角上可能是重叠的,但是三维中认为是不重叠或是相交的。在实体模型中的三角形是一个完全封闭的结构。

B-splines。B样条曲线是什么东西?用在什么地方

在数学的子学科数值分析里,B-样条是样条曲线一种特殊的表示形式。它是B-样条基曲线的线性组合。B-样条是贝兹曲线的一种一般化,可以进一步推广为非均匀有理B样条(NURBS),使得我们能给更多一般的几何体建造精确的模型。术语B样条是Isaac Jacob Schoenberg创造的,是基(basis)样条的缩略B样条曲线曲面具有几何不变性、凸包性、保凸性、变差减小性、局部支撑性等许多优良性质,是目前CAD系统常用的几何表示方法,因而基于测量数据的参数化和B样条曲面重建是反求工程的研究热点和关键技术之一。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3