扩频通信

您所在的位置:网站首页 通信干扰原理 扩频通信

扩频通信

2024-07-04 20:20| 来源: 网络整理| 查看: 265

关于本文:扩频通信的基本原理。

LoRa扩频技术改变了传输功耗和传输距离之间的平衡,彻底改变了嵌入式无线通信领域的局面。它给人们呈现了一个能实现远距离、长电池寿命、大系统容量、低硬件成本的全新通信技术。

从各种类型的噪声和多径失真中获得免疫性;得到信噪比的增益。换句话说,使用扩频通信抗干扰性更强,通信距离更远。CDMA和WiFi都使用了扩频技术。

扩频调制的示意图如下所示,用户数据的原始信号与扩展编码位流进行XOR(异或)运算,生成发送信号流,这种调制带来的影响是传输信号的带宽有显著增加(扩展了频谱)。

(如上图右上角的频谱图所示,深蓝色是原始信号,紫红色是扩频后的信号。扩频后带宽增加(横坐标),幅度减小(纵坐标。)

当然扩频技术也不是万能的,它至少有2个弊端:

◆ 扩展编码调制生成更多片的数据流导致通信数据率下降;

◆ 较复杂的调制和解调机制。

扩频因子

通俗的说,扩频时你的数据每一位都和扩频因子相乘,例如有一个1 bit需要传送,当扩频因子为1时,传输的时候数据1就用一个1来表示,扩频因子为6时(有6位)111111,这111111就来表示1,这样乘出来每一位都由一个6位的数据来表示,也就是说需要传输总的数据量增大了6倍。

这样扩频后传输可以降低误码率也就是信噪比,但是在同样数据量条件下却减少了可以传输的实际数据,所以,扩频因子越大,传输的数据数率(比特率)就越小。

原理

常规的数字数据通信原理是使用与数据速率相适应的尽可能小的带宽。这是因为带宽数是有限的,而且有很多的用户要分享。

扩频通信的原理是尽可能使用最大带宽数,同样的能量在一个大的带宽上传播。

这里扩频带宽的很小部分与常规无线信号相干扰,但常规无线信号不影响扩频信号,这是因为两者相比常规信号带宽很窄。

扩频通信,即扩展频谱通信技术(Spread Spectrum Communication),它的基本特点是其传输信息所用信号的带宽远大于信息本身的带宽。除此以外,扩频通信还具有如下特征:

1、是一种数字传输方式;

2、带宽的展宽是利用与被传信息无关的函数(扩频函数)对被传信息进行调制实现的;

3、在接收端使用相同的扩频函数对扩频信号进行相关解调,还原出被传信息。

根据香农(C.E.Shannon)在信息论研究中总结出的信道容量公式,即香农公式:

\bg_green \fn_cm \large C = W×log2(1+S/N)

式中:C–信息的传输速率 S–有用信号功率 W–频带宽度 N–噪声功率

由式中可以看出:

为了提高信息的传输速率C,可以从两种途径实现,既加大带宽W或提高信噪比S/N。换句话说,当信号的传输速率C一定时,信号带宽W和信噪比S/N是可以互换的,即增加信号带宽可以降低对信噪比的要求,当带宽增加到一定程度,允许信噪比进一步降低,有用信号功率接近噪声功率甚至淹没在噪声之下也是可能的。扩频通信就是用宽带传输技术来换取信噪比上的好处,这就是扩频通信的基本思想和理论依据。

扩频通信系统由于在发送端扩展了信号频谱,在接收端解扩还原了信息,这样的系统带来的好处是大大提高了抗干扰容限。理论分析表明,各种扩频系统的抗干扰性能与信息频谱扩展后的扩频信号带宽比例有关。一般把扩频信号带宽W与信息带宽△F之比称为处理增益GP,即:

它表明了扩频系统信噪比改善的程度。除此之外,扩频系统的其他一些性能也大都与GP有关。因此,处理增益是扩频系统的一个重要性能指标。

系统的抗干扰容限MJ定义如下:

式中:(S/N)0= 输出端的信噪比,LS = 系统损耗

 

由此可见,抗干扰容限MJ与扩频处理增益GP成正比,扩频处理增益提高后,抗干扰容限大大提高,甚至信号在一定的噪声湮没下也能正常通信。通常的扩频设备总是将用户信息(待传输信息)的带宽扩展到数十倍、上百倍甚至千倍,以尽可能地提高处理增益。

频谱的扩展是用数字化方式实现的。在一个二进制码位的时段内用一组新的多位长的码型予以置换,新码型的码速率远远高出原码的码速率,由傅立叶分析可知新码型的带宽远远高出原码的带宽,从而将信号的带宽进行了扩展。这些新的码型也叫伪随机(PN)码,码位越长系统性能越高。通常,商用扩频系统PN码码长应不低于12位,一般取32位,军用系统可达千位。

目前常见的码型有以下三种:

1、M序列,即最长线性伪随机系列;

2、GOLD序列;

3、WALSH函数正交码。

当选取上述任意一个序列后,如M序列,将其中可用的编码,即正交码,两两组合,并划分为若干组,各组分别代表不同用户,组内两个码型分别表示原始信息”1” 和”0”。系统对原始信息进行编码、传送,接收端利用相关处理器对接收信号与本地码型相关进行相关运算,解出基带信号( 即原始信息)实现解扩,从而区分出不同用户的不同信息。微波无线扩频通信的原理见图1:

                                                                                图1:扩频通信原理

由图可见,一般的无线扩频通信系统都要进行三次调制。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制。接收端有相应的射频解调,扩频解调和信息解调。根据扩展频谱的方式不同,扩频通信系统可分为:直接序列扩频(DS)、跳频(FH)、跳时(TH)、线性调频以及以上几种方法的组合。

所谓直接序列扩频(DS-Direct Scquency),就是用高码率的扩频码序列在发端直接去扩展信号的频谱,在收端直接使用相同的扩频码序列对扩展的信号频谱进行解调,还原出原始的信息。直接序列扩频的频谱扩展和解扩过程见图2和图3所示:

                                                                           图2:信息的频谱扩展过程

在图上我们可以看出:

在发端,信息码经码率较高的PN码调制以后,频谱被扩展了。在收端,扩频信号经同样的PN码解调以后,信息码被恢复;

信息码经调制、扩频传输、解调然后恢复的过程,类似与PN码进行了二次”模二相加”的过程。

我们可以用能量面积图示概念看出:

待传信息的频谱被扩展了以后,能量被均匀地分布在较宽的频带上,功率谱密度下降;

扩频信号解扩以后,宽带信号恢复成窄带信息,功率谱密度上升;

相对与信息信号,脉冲干扰只经过了一次被模二相加的调制过程,频谱被扩展,功率谱密度下降,从而使有用信息在噪声干扰中被提取出来。

小结

增加灵敏度(LoRa为-148dbm);

提高抗干扰能力;

增大系统容量(支持多信道多数据速率的并行处理)。

 



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3