【嵌入式】基于串口的IAP在线升级详解与实战1

您所在的位置:网站首页 软件升级app 【嵌入式】基于串口的IAP在线升级详解与实战1

【嵌入式】基于串口的IAP在线升级详解与实战1

2023-08-21 00:05| 来源: 网络整理| 查看: 265

 

目录

一 IAP功能介绍

二 IAP烧写流程说明

三 APP程序设计

四 IAP(BootLoader)程序设计

五 实际固件烧录

六 一些坑和注意点汇总

一 IAP功能介绍

最近有个需求是,使用专用的手机APP,通过蓝牙模块的通信,实现嵌入式芯片上程序的在线升级,流程如下所示:

这个需求的核心要点在于MCU的串口IAP在线升级功能。

IAP即为In Application Programming,解释为在应用中编程,用户自己的程序在运行过程中对User Flash的部分区域进行烧写。即是一种对单片机flash擦写的一种编程方案。通常情况下,一片flash只有一个用户程序,而IAP编程则是将单片机的flash分成至少两大区域,一部分叫做bootloader区,一部分叫做app用户代码区,还可留出一部分区域为代码备份区。

Flash的地址在所使用的芯片说明书上有详细的介绍,以我这边使用的LPC18XX芯片来说,芯片中有两块大小为512K的Flash,分别为Flash A(0x1A000000-0x1A080000)与Flash B(0x1B000000-0x1B080000),这两块Flash内部的扇区划分是一样的,都是8个8K的小扇区+7个64K的大扇区=512K,如下图所示:

根据上面的内存地址划分,MCU一上电,先从ROM A的起始地址0x1A000000开始执行。这样的话,设计将IAP程序放在ROM A的最开始段,比如0x1A000000-0x1A007FFF的32K空间(扇区号0-3),这里占据空间的大小根据实际的IAP程序大小决定。那么剩下来的ROM A中0x1A008000-0x1A07FFFF的480K空间(扇区号4-14)以及ROM B中0x1B000000-0x1B07FFFF的512K空间(扇区号0-14)就都分配给APP程序。

ROM B0x1B07FFFFAPP0x1B000000ROM A0x1A07FFFF0x1A0080000x1A007FFF(存放切换判断标志位flag_update)IAP0x1A000000

需要特别注意的是,要完成APP与IAP程序的切换判断,我们需要一个flag_update,当flag_update为0xFF的时候,视为正常上电状态,程序由IAP可以直接跳转到APP中执行;当flag_update为0x55的时候,视为远程烧写状态,程序由IAP开始之后,不跳转APP,而是执行自己的等待烧写流程。这边具体的流程和应用后面会具体介绍,这边捎带一提。为了满足切换判断的功能,就需要该标志位不随APP程序的烧写而发生变化,所以我这边选择将IAP存储区的最后一个字节,即地址0x1A007FFF作为flag_update的存储地址,这样,在IAP程序不变的情况下,随便怎么烧写APP,只要目标地址满足上述表格中的要求,该标志位就不会发生变化。当然,使用用其他满足条件的存储方式(诸如存入外部Flash、存入EEPROM等)都可以。

二 IAP烧写流程说明

上面说完了IAP与APP的内存地址分配,接下来介绍一下IAP功能的流程:

【APP】:对于APP程序来说,需要实现的很简单,就是在串口收到某些外部指令的时候,将flag_update置为远程烧写状态(0x55),并重启。重启之后,MCU会重新从IAP程序开始执行,执行到flag_update判断,不跳转APP,进而执行IAP中等待升级文件的流程。

【IAP】:对于IAP程序来说,首先根据flag_update状态判断是否跳转APP,如果不跳转,则等待升级包。待升级包传输完毕,全部写到APP的地址中之后,再执行跳转到APP程序的起始地址执行(或者直接重启)。当然,跳转之前需要将flag_update重新置为正常上电状态(0xFF),这样以避免下一次重启之后,程序仍然跑在IAP中。

三 APP程序设计

APP的程序主要包括地址配置和跳转IAP两方面功能:

【1】地址配置:

将其地址配置为功能介绍中规划的地址,同时在系统初始化程序中,将SCB->VTOR的地址配置为APP程序的起始地址:

void SystemInit (void) { #if (__FPU_USED == 1) SCB->CPACR |= ((3UL VTOR = getPC() & 0xFFF00000; //SCB->VTOR = 0x1A000000 | 0x0000; SCB->VTOR = 0x1A000000 | 0x8000; /* Configure PLL0 and PLL1, connect CPU clock to selected clock source */ SetClock(); /* Update SystemCoreClock variable */ SystemCoreClockUpdate(); /* Configure External Memory Controller */ SystemInit_ExtMemCtl (); //SDRAM123_Init(); }

【2】跳转IAP:

APP程序需要修改的核心程序体如下所示,串口收数据处理逻辑中,如果收到满足条件的通信码,则改写flag_update所在地址上的值:

if(/*收到满足条件的通信码*/) { iap_init(BANK0); Iap_Write_Config_Value(0x55); //runIap(); __set_FAULTMASK(1); //直接重启 NVIC_SystemReset(); }

其中,iap_init(BANK0)是用来初始化Flash A的,Iap_Write_Config_Value(0x55)是用来将flag_update置为0x55的:

unsigned char iapConfigBuffer[512]; uint8_t Iap_Write_Config_Value(uint8_t value) { uint32_t i = 0; uint8_t *p; p = (uint8_t*)0x1A007E00; //首先要将第三扇区尾部512字节数据全部读取到ram里面 for(i = 0; i < 512; i++) { iapConfigBuffer[i] = *p; p++; } //然后检查最后一个数据和我们要设置的数据是否相等 if(iapConfigBuffer[511] == value)//相等,不用设置了 { return 0; } else { CLOSE_CORE_INT(); pre_sector(3, 3, 0); //准备第三扇区 erase_sector(3, 3, 0); //清除第三扇区 OPEN_CORE_INT(); if(paramout[0] != CMD_SUCCESS) { return 1;//擦除失败 } //将数组最后一个元素设置为指定值 iapConfigBuffer[511] = value; CLOSE_CORE_INT(); pre_sector(3, 3, 0); //准备第三扇区 copy_ram_to_flash(0x1A007E00, (uint32_t)iapConfigBuffer, 512); //写flash OPEN_CORE_INT(); if(paramout[0] != CMD_SUCCESS) { return 1; } return 0; } }

Iap_Write_Config_Value中最为核心的接口就是copy_ram_to_flash,这个接口的作用就是将RAM中的数组iapConfigBuffer写到Flash中。这边需要注意的是,该接口复制字节的个数为512/1024/4096,所以我这边预设iapConfigBuffer数组长度为512,将这个数组最后一个元素置为0x55之后,复制到Flash的第3扇区尾部512字节长的区域,即地址段0x1A007E00-0x1A007FFF:

/****************************************************************************************************** ** 函数名称:copy_ram_to_flash() ** 函数功能:复制RAM的数据到FLASH,命令代码51。 ** 入口参数:dst 目标地址,即FLASH起始地址。以512字节为分界 ** src 源地址,即RAM地址。地址必须字对齐 ** no 复制字节个数,为512/1024/4096 ** 出口参数:IAP操作状态码 ** IAP返回值(paramout缓冲区) *******************************************************************************************************/ static uint32_t copy_ram_to_flash(uint32_t dst, uint32_t src, uint32_t no) { CLOSE_CORE_INT(); paramin[0] = IAP_RAMTOFLASH; // 设置命令字 paramin[1] = dst; // 设置参数 paramin[2] = src; paramin[3] = no; paramin[4] = IAP_FCCLK; iap_entry(paramin, paramout); // 调用IAP服务程序 OPEN_CORE_INT(); return(paramout[0]); // 返回状态码 }

综上,便能实现APP程序中收到指令,修改flasg_update,再跳转IAP(重启)的功能。

四 IAP(BootLoader)程序设计

相比于APP程序,IAP的设计会复杂一点,主要概括为以下几个点:地址配置、跳转APP、串口读写/回显、Ymodem移植等。

【1】地址配置:

将其地址配置为功能介绍中规划的地址,同时在系统初始化程序中,将SCB->VTOR的地址配置为APP程序的起始地址:

/*---------------------------------------------------------------------------- Initialize the system *----------------------------------------------------------------------------*/ void SystemInit (void) { #if (__FPU_USED == 1) SCB->CPACR |= ((3UL VTOR = getPC() & 0xFFF00000; SCB->VTOR = 0x1A000000 | 0x0000; /* Configure PLL0 and PLL1, connect CPU clock to selected clock source */ SetClock(); /* Update SystemCoreClock variable */ SystemCoreClockUpdate(); /* Configure External Memory Controller */ SystemInit_ExtMemCtl (); //SDRAM123_Init(); }

【2】跳转APP:

IAP程序中需要修改的核心程序体如下所示,上电IAP程序自检,如果位于0X1A007FFF的标志位值为0xFF,则进入APP程序地址运行,反之执行自身的烧写流程:

void UsbCdc_Task(void) { uint8_t key = 0; uint8_t *flag_update = (uint8_t*)FLAG_UPDATE_ADDRESS; //0X1A007FFF initUART1(); while(1) { //检查标志位符合要求,直接跳转APP程序段,否则执行自身的逻辑 if((*flag_update) == APP_CONFIG_CLEAR_VALUE) //0xFF { runApp(); } SerialPutString("\r\n============ IAP DownLoad ===========\r\n"); SerialPutString("= [1]Download File To Flash1 --> 1 =\r\n"); SerialPutString("= [2]Download File To Flash2 --> 2 =\r\n"); SerialPutString("= [3]Execute The New Program --> e =\r\n"); SerialPutString("= [4]Reboot --------------------> r =\r\n"); SerialPutString("=====================================\r\n"); key = GetKey(); switch(key) { case '1': //烧录第1块flash SerialDownload(BANK0); SerialPutString("Download File To Flash1, OK!\r\n"); break; case '2': //烧录第2块flash SerialDownload(BANK1); SerialPutString("Download File To Flash2, OK!\r\n"); break; case 'e': //跳转APP程序 SerialPutString("Execute The New Program!\r\n"); iap_init(BANK0); Iap_Write_Config_Value(APP_CONFIG_CLEAR_VALUE); // runApp(); //刚烧完就跳转有时会有问题,所以干脆直接重启 __set_FAULTMASK(1); NVIC_SystemReset(); break; case 'r': //重启 SerialPutString("\r\nSystem Reboot...\r\n"); __set_FAULTMASK(1); NVIC_SystemReset(); break; default: SerialPutString("The number should be either 1 or 2\r\n"); break; } } }

其中跳转接口runApp逻辑如下所示:

//JUMP// typedef void (*iapfun)(void); //定义一个函数类型的参数. iapfun jump2iap; #include //设置栈顶地址 //addr:栈顶地址 __asm void MSR_MSP(uint32_t addr) { MSR MSP, r0 //set Main Stack value BX r14 } #define vu32 volatile unsigned int void iap_jump(uint32_t iapxaddr) { if(((*(vu32*)iapxaddr)&0x10000000)==0x10000000) //检查栈顶地址是否合法.0x10000000是sram的起始地址,也是程序的栈顶地址 { jump2iap=(iapfun)*(vu32*)(iapxaddr+4); //用户代码区第二个字为程序开始地址(复位地址) os_dly_wait(10); MSR_MSP(*(vu32*)iapxaddr); //初始化APP堆栈指针(用户代码区的第一个字用于存放栈顶地址) jump2iap(); //跳转到APP. } } void runIap(void) { iap_jump(IAP_ADDRESS); }

【3】串口读写/回显:

这边使用了MCU中的UART1串口,初始化如下,需要特别注意的是,IAP功能尽量不要启用中断,否则可能会带来不可预料的问题,这边将NVIC_EnableIRQ直接注释掉了:

/************************************************************************** * 函数名称: initUART1 * 功能描述: UART1串口初始化 * 输入参数: * 输出参数: * 返 回 值: * 其它说明: 蓝牙 **************************************************************************/ void initUART1(void) { UART_CFG_Type UARTConfigStruct; UART_FIFO_CFG_Type UARTFIFOConfigStruct; scu_pinmux(0x5, 6, MD_PDN, FUNC4); //scu_pinmux(0x5, 7, MD_PLN|MD_EZI|MD_ZI, FUNC4); scu_pinmux(0xC, 14, MD_PLN|MD_EZI|MD_ZI, FUNC2); UART_ConfigStructInit1(&UARTConfigStruct); UART_FIFOConfigStructInit(&UARTFIFOConfigStruct); UART_Init((LPC_USARTn_Type *)LPC_UART1, &UARTConfigStruct); UART_FIFOConfig((LPC_USARTn_Type *)LPC_UART1, &UARTFIFOConfigStruct); UART_TxCmd((LPC_USARTn_Type *)LPC_UART1, ENABLE); UART_IntConfig((LPC_USARTn_Type *)LPC_UART1, UART_INTCFG_RBR, ENABLE); UART_IntConfig((LPC_USARTn_Type *)LPC_UART1, UART_INTCFG_RLS, ENABLE); NVIC_SetPriority(UART1_IRQn, ((0x03 Baud_rate = 115200; //蓝牙模块波特率 UART_InitStruct->Databits = UART_DATABIT_8; UART_InitStruct->Parity = UART_PARITY_NONE; UART_InitStruct->Stopbits = UART_STOPBIT_1; UART_InitStruct->Clock_Speed = 0; }

不启用中断,直接判断串口寄存器的状态来进行接收发送,接收发送的逻辑分别封装在串口按键响应和串口回显中,分别如下:

/******************************************************************************* * @函数名称 SerialKeyPressed * @函数说明 测试超级终端是否有按键按下 * @输入参数 key:按键 * @输出参数 无 * @返回参数 1:正确 0:错误 *******************************************************************************/ uint32_t SerialKeyPressed(uint8_t *key) { if (!(LPC_UART1->LSR & UART_LSR_RDR)) { return 0; } else { *key = UART_ReceiveByte((LPC_USARTn_Type*)LPC_UART1); return 1; } } /******************************************************************************* * @函数名称 GetKey * @函数说明 通过超级终端回去键码 * @输入参数 无 * @输出参数 无 * @返回参数 按下的键码 *******************************************************************************/ uint8_t GetKey(void) { uint8_t key = 0; /* Waiting for user input */ while (1) { if(SerialKeyPressed((uint8_t*)&key)) break; } return key; } /******************************************************************************* * @函数名称 SerialPutChar * @函数说明 串口发送一个字符 * @输入参数 C:需发送的字符 * @输出参数 i无 * @返回参数 无 *******************************************************************************/ void SerialPutChar(uint8_t c) { UART_SendByte((LPC_USARTn_Type*)LPC_UART1, c); while(!(LPC_UART1->LSR & UART_LSR_THRE)) { } } /******************************************************************************* * @函数名称 SerialPutChar * @函数说明 串口发送一个字符串 * @输入参数 *s:需发送的字符串 * @输出参数 无 * @返回参数 无 *******************************************************************************/ void Serial_PutString(uint8_t *s) { while (*s != '\0') { SerialPutChar(*s); s++; } }

【4】Ymodem移植:

核心程序体中可以看到,当输入"1"或者”2“时,会分别烧录第1或者第2块flash,传输协议选用Ymodem-1K。这一块的内容比较多,所以单列一篇帖子具体叙述,请参考:

【嵌入式】基于串口的IAP在线升级详解与实战2----移植Ymodem协议

 

五 实际固件烧录

上面的IAP与APP程序设计完成之后,就可以通过超级终端或者SecureCRT来进行IAP固件烧录了,我这边使用超极终端的Ymodem进行烧写(这边兼容Ymodem协议和蓝牙BLE的安卓APP还在进行中,待完成之后,就可以在手机上进行操作了)。

【1】首先打开超级终端,超级终端设置如下:

【2】接到串口上之后,重启MCU,会首先进入到IAP程序,此时flag_update为0x55,所以执行IAP烧写流程(如果首先flag_update是0xFF,首先进入的是APP程序,此时通过串口发一个指令即可修改flag_update并跳转IAP)。打印如下:

【3】这边我需要烧写的文件比较大,分摊在Flash1与Flash2中,所以需要分别烧写(一般需要烧写的文件比较小的话VTOR的赋值:

/*---------------------------------------------------------------------------- Initialize the system *----------------------------------------------------------------------------*/ void SystemInit (void) { #if (__FPU_USED == 1) SCB->CPACR |= ((3UL VTOR = 0x1A000000 | 0x8000; //APP程序中断向量表重定向 //SCB->VTOR = 0x1A000000 | 0x0000; //IAP程序中断向量表重定向(就是初始位置,也可以不重定向) /* Configure PLL0 and PLL1, connect CPU clock to selected clock source */ SetClock(); /* Update SystemCoreClock variable */ SystemCoreClockUpdate(); /* Configure External Memory Controller */ SystemInit_ExtMemCtl (); //SDRAM123_Init(); }

(3)外设中断的关闭:

现在芯片里有2套程序,大家都要使用外设中断寄存器来做中断相关的操作(配置,开启等),但是外设中断寄存器只有一套。如果Bootloader配置了一个定时器中断寄存器并开启,也写好了中断处理函数,然后没有disable它就跳转到APP去,而APP代码里没有使用定时器中断,也没有写中断处理函数,那么就会导致崩溃。因为配置好的定时器中断,到了定时时间要去执行中断处理函数,而中断向量表已经重定向了,现在的中断向量表里没有对应的中断处理函数。

看过前面的跳转代码的人可能会问:不是已经使用了__disable_irq()了吗,为什么还不行?因为这个语句是关的总中断,当跳到APP后需要重新开启总中断,那么到时候它下面的那些外设中断又重新开始运行了(外设中断寄存器的值没有被清除掉)。就跟家里的水阀和水龙头一个道理,水阀是总阀,水阀关了,即使水龙头开着也不会出水,但是如果水阀开着,那么水龙头出不出水就取决于水龙头的开关情况了。

所以我们在IAP程序中初始化串口的时候,需要在__disable_irq()语句之后,需要关掉中断。

另外,我们可以使用NVIC_DisableIRQ()来关闭外设中断。如果有多个中断开着,就多次调用这个函数,例如:

NVIC_DisableIRQ(WWDG_IRQn); NVIC_DisableIRQ(RTC_IRQn); NVIC_DisableIRQ(DMA1_Channel1_IRQn);

(4)不能重启的问题:我在使用中遇到了使用__set_FAULTMASK(1);NVIC_SystemReset();不能重启的情况,执行到这边之后就挂死了。后来参照着另外一个能够重启的工程,把程序的内核由CORE_M3改成了CORE_M4,就能够重启了。

虽然问题解决,但是原因还是没有搞清楚,后面询问NXP官方也没有得到清晰的答案。这边把问题贴出来,如果有大神看出来原因,希望不吝赐教。

(5)超级终端与SecureCRT上Ymodem-1K协议的使用有区别:

正常超级终端与SecureCRT两者发Ymodem-1K包,只可能是1024或者128两种包长,有效数据之外的部分用1A填充至标准包长。

但是,调试的最后遇到一个很奇怪的问题,就是超级终端与SecureCRT对于Ymodem-1K的使用有区别,主要区别在于尾包(文件总大小%1024)的处理上,当尾包大于128或者小于128,这两个软件的发包行为是有区别的:

传送文件大小1216byte = 1K+192byte(尾包192byte > 128byte)1072byte = 1K+48byte(尾包48byte < 128byte)超级终端

数据段分成两个1K包:

1K+1K(192有效,剩余填充1A)

数据段分成一个1K包和一个128byte包:

1K+128(48有效,剩余填充为1A)

SecureCRT

数据段分成一个1K包和两个128byte包:

1K+128+128(192-168=64有效,剩余填充为1A)

数据段分成一个1K包和一个128byte包:

1K+128(48有效,剩余填充为1A)

我的程序在尾包处理那边没有针对这个区别做特殊处理,所以目前只支持超级终端。

网上查询相关资料,应该是超级终端的这种形式符合参考链接中描述的Ymodem要求:(参考链接:http://www.51hei.com/bbs/dpj-32461-1.html)

 

 



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3