影响肾内科进展的60个重大发现(十二)

您所在的位置:网站首页 肾内科资料 影响肾内科进展的60个重大发现(十二)

影响肾内科进展的60个重大发现(十二)

2023-09-04 01:40| 来源: 网络整理| 查看: 265

氧平衡对细胞生存至关重要,依赖于其与血红蛋白结合的转运方式。发生缺氧时,促红细胞生成素(EPO)诱导增加,促进红细胞生成和氧气输送。然而,直到1992年Gregg Semenza发现关键的转录因子低氧诱导因子(HIF)时,EPO调控才得到全面的研究(1)。HIF由组成型β亚基和氧依赖性α亚基组成(2)。Peter J.Ratcliffe博士阐明了HIF的氧依赖性调节机制,揭示了HIF-α通过HIF脯氨酸羟化酶(HIF-PH),对特定脯氨酸残基的氧依赖性羟基化(3-4)。随后William Kaelin Jr.证明了von Hippel-Lindau(VHL)E3连接酶在羟化HIF-α蛋白水解中的重要作用(5)。在缺氧或PHD抑制下,HIF-α易位进入细胞核并与HIF-β形成异源二聚体,从而启动EPO(特定的HIF-2α靶目标)和其他靶目标的转录。在肾功能降低的状态下,肾脏中产生EPO的细胞失去产生EPO的能力,从而导致造血功能降低,血红蛋白下降。Karolinska学院诺贝尔基金会将2019年诺贝尔生理学或医学奖共同颁发给Peter J. Ratcliffe博士、 Gregg L. Semenza 和William G. Kaelin博士,以表彰他们对细胞如何感知和适应氧气变化的重要发现。Peter J. Ratcliffe博士因此成为第一位获得诺贝尔奖得主的肾脏病学家。使用HIF-PH抑制剂的干预措施可作为CKD贫血的一种新型治疗方法(6-7)。

值得注意的是,缺氧和HIF调节涉及许多病理生理过程,包括肾脏疾病。最初由Leon Fine提出的“慢性低氧假说”强调了,肾小管间质区的慢性低氧可能是终末期肾脏疾病的最终常见途径(8)。随后Masaomi Nangaku和Kai-Uwe Eckardt分别对这一概念进行了扩展和验证(9-10)。实验技术的发展使科学家能够监测活体动物细胞内氧气张力,进一步阐明缺氧在肾脏疾病中的关键作用(11)。现在,肾脏的慢性缺氧被认为是治疗的重要靶目标。对于CKD,HIF激活可能是一种有效的治疗方法,不仅是贫血的治疗手段,且还能延缓肾脏疾病的进展。

References

1.Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12:5447-54.

2.Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92:5510-4.

Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji 3.M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468-72.

4.Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107:43-54.

5.Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292:464-8.

6.Chen N, Hao C, Peng X, Lin H, Yin A, Hao L, Tao Y, Liang X, Liu Z, Xing C, Chen J, Luo L, Zuo L, Liao Y, Liu BC, Leong R, Wang C, Liu C, Neff T, Szczech L, Yu KP. Roxadustat for Anemia in Patients with Kidney Disease Not Receiving Dialysis. N Engl J Med. 2019;381:1001-1010.

7.Chen N, Hao C, Liu BC, Lin H, Wang C, Xing C, Liang X, Jiang G, Liu Z, Li X, Zuo L, Luo L, Wang J, Zhao MH, Liu Z, Cai GY, Hao L, Leong R, Wang C, Liu C, Neff T, Szczech L, Yu KP. Roxadustat Treatment for Anemia in Patients Undergoing Long-Term Dialysis. N Engl J Med. 2019;381:1011-1022.

8.Fine LG, Orphanides C, Norman JT. Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int Suppl. 1998 Apr;65:S74-8.

9.Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol. 2006;17:17-25.

10.Eckardt KU, Bernhardt WM, Weidemann A, Warnecke C, Rosenberger C, Wiesener MS, Willam C. Role of hypoxia in the pathogenesis of renal disease. Kidney Int Suppl. 2005;(99):S46-51.

11.Hirakawa Y, Mizukami K, Yoshihara T, Takahashi I, Khulan P, Honda T, Mimura I, Tanaka T, Tobita S, Nangaku M. Intravital phosphorescence lifetime imaging of the renal cortex accurately measures renal hypoxia. Kidney Int. 2018;93:1483-1489.



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3