Python深度学习实战:人脸关键点(15点)检测pytorch实现

您所在的位置:网站首页 网络class Python深度学习实战:人脸关键点(15点)检测pytorch实现

Python深度学习实战:人脸关键点(15点)检测pytorch实现

2024-01-01 12:23| 来源: 网络整理| 查看: 265

引言

人脸关键点检测即对人类面部若干个点位置进行检测,可以通过这些点的变化来实现许多功能,该技术可以应用到很多领域,例如捕捉人脸的关键点,然后驱动动画人物做相同的面部表情;识别人脸的面部表情,让机器能够察言观色等等。 在这里插入图片描述

如何检测人脸关键点

本文是实现15点的检测,至于N点的原理都是一样的,使用的算法模型是深度神经网络,使用CV也是可以的。

如何检测

这个问题抽象出来,就是一个使用神经网络来进行预测的功能,只不过输出是15个点的坐标,训练数据包含15个面部的特征点和面部的图像(大小为96x96),15个特征点分别是:left_eye_center, right_eye_center, left_eye_inner_corner, left_eye_outer_corner, right_eye_inner_corner, right_eye_outer_corner, left_eyebrow_inner_end, left_eyebrow_outer_end, right_eyebrow_inner_end, right_eyebrow_outer_end, nose_tip, mouth_left_corner, mouth_right_corner, mouth_center_top_lip, mouth_center_bottom_lip 因此神经网络需要学习一个从人脸图像到15个关键点坐标间的映射。

使用的网络结构

在本文中,我们使用深度神经网络来实现该功能,基本卷积块使用Google的Inception网络,也就是使用GoogLeNet网络,该结构的网络是基于卷积神经网络来改进的,是一个含有并行连接的网络。 众所周知,卷积有滤波、提取特征的作用,但到底采用多大的卷积来提取特征是最好的呢?这个问题没有确切的答案,那就集百家之长:使用多个形状不一的卷积来提取特征并进行拼接,从而学习到更为丰富的特征;特别是里面加上了1x1的卷积结构,能够实现跨通道的信息交互和整合(其本质就是在多个channel上的线性求和),同时能在feature map通道数上的降维(读者可以验证计算一下,能够极大减少卷积核的参数),也能够增加非线性映射次数使得网络能够更深。 下面是Inception块的示意图: 在这里插入图片描述 整个GoogLeNet的结构如下所示: 在这里插入图片描述 接下来是代码实现部分,后续作者会补充神经网络的相关原理知识,若对此感兴趣的读者也可继续关注支持~

代码实现 import torch as tc from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader from torch.utils.data import TensorDataset import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.utils import shuffle # 对图片像素的处理 def proFunc1(data,testFlag:bool=False) -> tuple: data['Image'] = data['Image'].apply(lambda im: np.fromstring(im, sep=' ')) # 处理na data = data.dropna() # 神经网络对数据范围较为敏感 /255 将所有像素都弄到[0,1]之间 X = np.vstack(data['Image'].values) / 255 X = X.astype(np.float32) # 特别注意 这里要变成 n channle w h 要跟卷积第一层相匹配 X = X.reshape(-1, 1,96, 96) # 等会神经网络的输入层就是 96 96 黑白图片 通道只有一个 # 只有训练集才有y 测试集返回一个None出去 if not testFlag: y = data[data.columns[:-1]].values # 规范化 y = (y - 48) / 48 X, y = shuffle(X, y, random_state=42) y = y.astype(np.float32) else: y = None return X,y # 工具类 class UtilClass: def __init__(self,model,procFun,trainFile:str='data/training.csv',testFile:str='data/test.csv') -> None: self.trainFile = trainFile self.testFile = testFile self.trainData = None self.testData = None self.trainTarget = None self.model = model self.procFun = procFun @staticmethod def procData(data, procFunc ,testFlag:bool=False) -> tuple: return procFunc(data,testFlag) def loadResource(self): rawTrain = pd.read_csv(self.trainFile) rawTest = pd.read_csv(self.testFile) self.trainData , self.trainTarget = self.procData(rawTrain,self.procFun) self.testData , _ = self.procData(rawTest,self.procFun,testFlag=True) def getTrain(self): return tc.from_numpy(self.trainData), tc.from_numpy(self.trainTarget) def getTest(self): return tc.from_numpy(self.testData) @staticmethod def plotData(img, keyPoints, axis): axis.imshow(np.squeeze(img), cmap='gray') # 恢复到原始像素数据 keyPoints = keyPoints * 48 + 48 # 把keypoint弄到图上面 axis.scatter(keyPoints[0::2], keyPoints[1::2], marker='o', c='c', s=40) # 自定义的卷积神经网络 class MyCNN(tc.nn.Module): def __init__(self,imgShape = (96,96,1),keyPoint:int = 15): super(MyCNN, self).__init__() self.conv1 = tc.nn.Conv2d(in_channels=1, out_channels =10, kernel_size=3) self.pooling = tc.nn.MaxPool2d(kernel_size=2) self.conv2 = tc.nn.Conv2d(10, 5, kernel_size=3) # 这里的2420是通过下面的计算得出的 如果改变神经网络结构了 # 需要计算最后的Liner的in_feature数量 输出是固定的keyPoint*2 self.fc = tc.nn.Linear(2420, keyPoint*2) def forward(self, x): # print("start----------------------") batch_size = x.size(0) # x = x.view((-1,1,96,96)) # print('after view shape:',x.shape) x = F.relu(self.pooling(self.conv1(x))) # print('conv1 size',x.shape) x = F.relu(self.pooling(self.conv2(x))) # print('conv2 size',x.shape) # print('end--------------------------') # 改形状 x = x.view(batch_size, -1) # print(x.shape) x = self.fc(x) # print(x.shape) return x # GoogleNet基本的卷积块 class MyInception(nn.Module): def __init__(self,in_channels, c1, c2, c3, c4,) -> None: super().__init__() self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1) self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1) self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1) self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1) self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2) self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1) def forward(self, x): p1 = F.relu(self.p1_1(x)) p2 = F.relu(self.p2_2(F.relu(self.p2_1(x)))) p3 = F.relu(self.p3_2(F.relu(self.p3_1(x)))) p4 = F.relu(self.p4_2(self.p4_1(x))) # 在通道维度上连结输出 return tc.cat((p1, p2, p3, p4), dim=1) # GoogLeNet的设计 此处参数结果google大量实验得出 b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1), nn.ReLU(), nn.Conv2d(64, 192, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) b3 = nn.Sequential(MyInception(192, 64, (96, 128), (16, 32), 32), MyInception(256, 128, (128, 192), (32, 96), 64), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) b4 = nn.Sequential(MyInception(480, 192, (96, 208), (16, 48), 64), MyInception(512, 160, (112, 224), (24, 64), 64), MyInception(512, 128, (128, 256), (24, 64), 64), MyInception(512, 112, (144, 288), (32, 64), 64), MyInception(528, 256, (160, 320), (32, 128), 128), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) b5 = nn.Sequential(MyInception(832, 256, (160, 320), (32, 128), 128), MyInception(832, 384, (192, 384), (48, 128), 128), nn.AdaptiveAvgPool2d((1,1)), nn.Flatten()) uClass = UtilClass(model=None,procFun=proFunc1) uClass.loadResource() xTrain ,yTrain = uClass.getTrain() xTest = uClass.getTest() dataset = TensorDataset(xTrain, yTrain) trainLoader = DataLoader(dataset, 64, shuffle=True, num_workers=4) # 训练net并进行测试 由于显示篇幅问题 只能打印出极为有限的若干测试图片效果 def testCode(net): optimizer = tc.optim.Adam(params=net.parameters()) criterion = tc.nn.MSELoss() for epoch in range(30): trainLoss = 0.0 # 这里是用的是mini_batch 也就是说 每次只使用mini_batch个数据大小来计算 # 总共有total个 因此总共训练 total/mini_batch 次 # 由于不能每组数据只使用一次 所以在下面还要使用一个for循环来对整体训练多次 for batchIndex, data in enumerate(trainLoader, 0): input_, y = data yPred = net(input_) loss = criterion(yPred, y) optimizer.zero_grad() loss.backward() optimizer.step() trainLoss += loss.item() # 只在每5个epoch的最后一轮打印信息 if batchIndex % 30 ==29 and not epoch % 5 : print("[{},{}] loss:{}".format(epoch + 1, batchIndex + 1, trainLoss / 300)) trainLoss = 0.0 # 测试 print("-----------test begin-------------") # print(xTest.shape) yPost = net(xTest) # print(yPost.shape) import matplotlib.pyplot as plt %matplotlib inline fig = plt.figure(figsize=(20,20)) fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05) for i in range(9,18): ax = fig.add_subplot(3, 3, i - 9 + 1, xticks=[], yticks=[]) uClass.plotData(xTest[i], y[i], ax) print("-----------test end-------------") if __name__ == "__main__": # 训练MyCNN网络 并可视化在9个测试数据的效果图 myNet = MyCNN() testCode(myNet) inception = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 30)) testCode(inception)

本文使用的数据可在此找到两个data文件,本文有你帮助的话,就给个点赞关注支持一下吧!



【本文地址】


今日新闻


推荐新闻


    CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3