食品级米糠的研究进展及前景展望

您所在的位置:网站首页 米糠的饲用价值 食品级米糠的研究进展及前景展望

食品级米糠的研究进展及前景展望

2023-09-04 21:44| 来源: 网络整理| 查看: 265

食品级米糠的研究进展及前景展望

马宗会,殷宝茹,张 海,徐学兵✉

(丰益(上海)生物技术研发中心有限公司,上海 200137)

摘 要:综述米糠的营养价值、利用现状以及开发食品级米糠的前景展望。米糠具有较高的营养价值和多种生物活性,是一种具有很大开发潜力的食品原料。米糠纤维的利用以改性为主,物理法与酶法相结合及超临界CO2 处理有利于提高可溶性膳食纤维含量和纤维提取率。米糠蛋白的利用分为提取和改性,其中提取以物理法与酶法结合为重点研究方向,另外新型绿色亚临界水提取技术也逐渐成为研究热点,米糠蛋白改性以酶法改性为主,改性后可以提高蛋白的功能性和生物活性。食品级米糠的开发是未来的发展趋势。

关键词:食品级米糠;米糠纤维;米糠蛋白;膳食纤维;脱脂米糠

我国稻谷产量占世界总产量的30%以上,居世界首位。2020 年我国稻谷产量达到2.1 亿吨[1]。稻谷加工过程中的主要副产物是米糠,约占稻谷总质量的7%,加工后的米糠总产量巨大。米糠主要由五部分组成:外果皮、中果皮、交联层、种皮和糊粉层,营养成分主要是蛋白、脂肪、膳食纤维、维生素和矿物质,据研究报道米糠中的营养成分占稻谷中总营养成分的64%[2]。

稻谷生产主要分布在亚洲,产量占据世界总产量的70%以上,各国在稻谷种植品种上有一定差异,在米糠使用上也有不少差异。就国内米糠而言,赵鑫等[3]研究了不同品种米糠之间的营养组分差异性,不同种源米糠中各个成分的含量有较大差异,不同成分之间具有一定的相关性。这是由于稻谷的生长环境如气候、土壤等条件的不同造成了这种差异。

目前我国不断加强对米糠的研发利用,但是米糠的利用率还不足20%,与国外的利用状况相比还有差距。国内米糠主要用作米糠油和菲丁的原料,其余的米糠基本都用作饲料[4]。近年来,随着米糠稳定化技术的突破,米糠经过稳定化处理后,风味和口感得到很大改善,完全可以用作食品配料。食品级米糠的开发将是未来发展的趋势,因为不但可以增加米糠的附加值,而且能够提高米糠的利用率。

1 米糠的营养价值

通常我们说的米糠是指未经提取米糠油的全脂米糠。一般其组成为:水分 7%~14%、灰分8%~12%、纤维33%~53%、油脂14%~24%、蛋白质12%~16%[5]。米糠中含有大量的生物活性因子[6-7],具有预防心脑血管疾病和抑制肿瘤等生理功能[8-9]。

米糠的营养功能除了所含的油脂及脂溶性组分外,主要体现在米糠膳食纤维和米糠蛋白上。目前对米糠整体营养功能的研究较少,如Wilson等[10]用全脂米糠饲喂老鼠,实验发现全脂米糠与燕麦麸相似,可降低高胆固醇仓鼠血浆胆固醇水平和早期主动脉粥样硬化的发生。Fukushima 等[11]用全脂米糠饲喂老鼠,结果发现米糠在老鼠盲肠中发酵产生的丙酸、丁酸等代谢产物及米糠油能有效降低胆固醇水平。

1.1 米糠膳食纤维

米糠膳食纤维(Rice bran dietary fiber, RBDF)根据水溶性可分为两种,一种是可溶性膳食纤维(Soluble dietary fiber,SDF),另一种是不溶性膳食纤维(Insoluble dietary fiber,IDF)[12]。其中不溶性膳食纤维的生理功能主要体现在促进肠道蠕动,预防肥胖症、便秘和肠道癌等;可溶性膳食纤维的生理功能更加强大,如调节血糖血脂,防治Ⅱ型糖尿病和高血压等疾病[9]。因此,膳食纤维被称为第七营养素[13]。关于米糠膳食纤维营养功能及生物活性研究的进展总结如表1。

表1 米糠膳食纤维营养功能及生物活性研究进展Table 1 Research progress on nutritional function and biological activity of RBDF

?

1.2 米糠蛋白

米糠蛋白是一种高质量的蛋白,具有低过敏性,可用于婴幼儿配方食品[21];还具有抗癌活性[22]。米糠蛋白主要由四种蛋白组成:清蛋白、球蛋白、谷蛋白和醇溶蛋白。它的生物学效价为2.0~2.5,消化率可达90%以上,并且米糠蛋白中必需氨基酸组分配比十分合理,符合国际食品法典委员会推荐模式[23]。关于米糠蛋白营养功能及生物活性研究的进展总结如表2。

表2 米糠蛋白营养功能及生物活性研究进展Table 2 Research progress on nutritional function and biological activity of RB protein

?

1.3 米糠油

米糠脂类成分是米糠的重要组成部分,其油脂商业产品又叫米糠油或稻米油。稻米油的主要脂肪酸组成为[34]:油酸(37%~41%),亚油酸(37%~41%),棕榈酸(22%~25%)。其甘三酯主要组成见表3,其中含量约一半是三不饱和甘三酯,包括 OOO,LLL,OOL,OLL。其油脂的Sn-2 脂肪酸组成为:约50%为亚油酸,45%为油酸。其油脂脂溶性微量成分的组成为:谷维素、植物甾醇、生育酚、生育三烯酚[35]。关于稻米油及其中的微量成分的营养及生理功能已有相对较多的研究,在其它论文中有专门讨论,此处不再赘述。

表3 稻米油的甘三酯组成[35]Table 3 Triglyceride composition of rice bran oil[35]

备注:P: 棕榈酸,L:亚油酸,O:油酸。Note: P: palmitic acid, L: linoleic acid, O: oleic acid.

?

脱脂米糠是米糠深加工的重要产品形式,是全脂米糠提取油脂后的产物,其主要的产品特征是脂肪含量较低,一般低于3%,膳食纤维总含量50%以上,蛋白含量约20%。它与全脂米糠的主要差异在于油脂含量的降低和脂溶性营养组分的减少。

目前食品级米糠的开发方向,一方面集中在米糠膳食纤维和米糠蛋白营养功能的提升及利用上,另一方面全脂米糠和脱脂米糠的整体利用也逐渐引起人们重视。

2 米糠膳食纤维 2.1 米糠纤维的结构、组成及性能

米糠纤维由纤维素、半纤维素和木质素组成,在米糠中的含量分别为13.1%、17.8%、2.1%。米糠纤维有较好的持水力、膨胀力和持油力[36]。

2.2 米糠膳食纤维提取

米糠膳食纤维的提取是米糠利用的方式之一,分为物理法、化学法和酶法提取。其中物理法提取的优点是能较好地保持膳食纤维的生物活性,缺点是相关设备成本较高,不易工业化生产[37];化学法提取的优点是工艺简单、成本较低,缺点是膳食纤维中的水溶性膳食纤维和半纤维素会遭到溶剂的破坏,降低了生物活性;酶法提取的优点是条件相对温和,提取的膳食纤维纯度较高[38],缺点是酶的成本较高,不易于工业化推广。

2.3 米糠膳食纤维改性

米糠膳食纤维的改性也是米糠利用的重要途径,通过改性可提高米糠膳食纤维中可溶性膳食纤维的含量,将一部分不溶性膳食纤维转变成可溶性膳食纤维,同时可改善膳食纤维的物理特性,如持水力、持油力、膨胀力等。改性也分为物理改性、化学改性以及酶法改性,其中物理改性常与酶法改性联合进行。

2.3.1 挤压膨化—酶法处理

挤压膨化技术是一种利用高温、高压短时处理物料,综合了水分、热能、压力和剪切力共同作用,它能够破坏纤维分子间的糖苷键,使不溶性膳食纤维转化为可溶性膳食纤维[39],同时它还能使脂肪酶钝化失活,从而延长米糠的贮藏期,是目前米糠稳定化的首选方法。

王旭等[40]通过先挤压膨化再酶解的方法来提取米糠中的可溶性膳食纤维,通过实验分析了不同挤压工艺和酶解条件对米糠中可溶性膳食纤维提取率的影响,在最佳挤压膨化和酶解条件下可溶性膳食纤维提取率达到30%以上。Dang 等[41]单独使用挤压膨化处理水洗后的脱脂米糠,可溶性膳食纤维增加 30%。另外,通过先挤压膨化再用木聚糖酶酶解,可溶性膳食纤维含量增加4 倍。

2.3.2 超临界CO2—酶法处理

超临界CO2 萃取是一种绿色环保的提取技术,可在接近室温的条件下对物质进行提取分离。王大为等[42]使用超临界CO2 处理新鲜米糠,在压力25 MPa,温度45 ℃下提取90 min,再将提取得到的米糠纤维进行酶法处理,最后所得米糠纤维的膨胀力、持水力和结合水力均有明显提升,并且吸脂力有所下降。

2.3.3 化学改性

化学法改性是通过酸碱处理米糠,破坏米糠膳食纤维的结构,从而改变可溶性膳食纤维与不溶性膳食纤维的比例,进而改善膳食纤维的功能特性[43]。

Qi 等[44]通过酸和碱相结合处理米糠,有效地提高了米糠纤维的孔隙率和比表面积,提升了对葡萄糖的吸附能力2~3 倍,最高抑制淀粉酶的活性达到24.7%。因此,米糠纤维降血糖能力得到了增强。

2.3.4 酶法改性

为了提高米糠中可溶性膳食纤维(SDF)的含量并改善其理化性质,张光等[45]利用纤维素酶与木聚糖酶对米糠膳食纤维进行酶法改性,通过单因素及正交试验对酶解工艺条件进行优化,可溶性膳食纤维(SDF)含量提高到9.2%,且复合酶水解后所得膳食纤维理化性质也得到了改善,持水力得到了提升。

综上所述,米糠纤维的改性目的主要是为了提升可溶性膳食纤维的含量和改善米糠纤维的物理特性及生物活性。物理法和酶法相结合的改性方法更有应用前景。

3 米糠蛋白 3.1 米糠蛋白的结构、组成及性能

米糠蛋白中含有四类蛋白:清蛋白,球蛋白,谷蛋白和醇溶蛋白[46]。米糠蛋白含有所有的必须氨基酸,并且氨基酸组成相比大豆分离蛋白更加合理,如蛋氨酸、组氨酸、苯丙氨酸、缬氨酸和亮氨酸。另外,米糠蛋白与大豆分离蛋白的溶解性、乳化性和起泡性十分相似[47]。

3.2 米糠蛋白的提取

米糠蛋白的提取方法也分为化学法、物理法和酶法。由于米糠蛋白与米糠中的植酸、纤维等交联在一起,造成了分离提取的困难,所以单一方法提取效率并不高,一般采用多种方法组合的提取工艺来提高米糠蛋白提取率[48]。

3.2.1 化学法

化学法提取米糠蛋白主要以碱法为主,在碱性条件下米糠中的氢键、二硫键、酰胺键会发生水解,该方法的缺点是:米糠蛋白易变性,非蛋白物质溶解,美拉德反应产生褐色物质,影响米糠蛋白产品的品质[49]。

3.2.2 物理法

一般来说,物理法提取更易于在工业中应用,并且具有经济性,对产品品质影响小等优点。常用的蛋白质提取的物理法包括胶体磨、均质、高速混合、高压和超声波等[50],但是单纯使用物理法提取米糠蛋白的效率较低。

3.2.3 酶法

酶法提取主要是利用糖化酶破坏米糠中的纤维和细胞壁,从而有利于蛋白的提取[51],糖化酶主要包括纤维素酶、半纤维素酶、木聚糖酶及其组合酶。Shih 等[52]用半纤维素酶在65 ℃、pH 4.0条件下,米糠蛋白提取率为46%。

由于米糠中的蛋白还与淀粉相结合,所以糖化酶与淀粉酶组合可以提高米糠蛋白的提取率,Tang 等[53]研究了淀粉酶与纤维素酶组合提取稳定化脱脂米糠中的蛋白,蛋白提取率最高达到58%。

另外,米糠中的蛋白还与植酸结合,利用植酸酶可以破坏蛋白与植酸的连接,从而提高米糠蛋白提取率,Wang[54]等单独使用植酸酶提取米糠蛋白,提取率达到57%,而与木聚糖酶组合提取米糠蛋白,提取率高达75%。

蛋白酶一般通过控制水解度实现脱苦和提升风味的作用,它可将米糠蛋白水解为肽,同时增加水溶性,从而提升蛋白提取率。Hamada[55]利用风味酶在50 ℃、pH 8.0 条件下,米糠蛋白提取率达到了88%。

综上所述,酶法与化学法、物理法相比,米糠蛋白的提取率显著提升,但是目前酶的成本较高,影响工业化的应用。

3.2.4 物理法—酶法

米糠蛋白包埋在米糠的细胞壁中,破坏米糠的细胞壁有利于米糠蛋白的提取,因此通过物理法先预处理米糠,再结合酶法提取可以提高米糠蛋白的提取率。

Tang 等[56]通过物理法和酶法结合提取米糠蛋白,分别通过先高速混合和高压处理,再用淀粉酶和蛋白酶的复合酶进行酶解,蛋白提取率可达到65%以上。Hamada[57]先通过高速混合处理米糠,再用Alcalase 酶解,蛋白提取率达到81%,蛋白溶解性也明显提高。

3.2.5 亚临界水

亚临界水提取(Subcritical Water Extraction,SWE)是一种新型的绿色提取技术,被广泛应用于生物活性物质的提取,具有提取效率高、提取过程清洁且可以有效保护提取物不被破坏等优点[58]。常温常压下,水是一种强极性溶剂,而亚临界水能够在100~374 ℃,临界压力(22.1 MPa)下保持液体[59],随着温度升高,水的极性减小,介电常数降低,能够萃取非极性物质。亚临界水还含有较高浓度的氢离子和氢氧根离子,它们能催化许多化学反应,如肽的水解和糖苷键的水解[60]。

张慧娟等[61]利用亚临界水提取脱脂米糠中的蛋白质,优化了提取时间和温度,考察了不同提取条件对提取物中蛋白质含量、总糖含量、氨基酸组成及分子质量分布的影响。结果发现:在提取温度175 ℃、提取时间30 min 时,提取物中蛋白质及氨基酸的含量最高,分别为50%和4.9%。Watchararuji 等[62]利用亚临界水在220 ℃条件下提取米糠蛋白,提取率可以达到84%,但温度过高可能会对米糠蛋白的功能特性造成影响。

3.3 米糠蛋白的改性

米糠蛋白的天然组成决定了它在水中的溶解度较低,影响了发泡性和乳化性,以及生物活性[63],可以通过蛋白的水解来改变其结构,从而改变蛋白的性质。过去几十年,通过酶法水解提高蛋白的功能性和生物活性不断引起人们的重视,功能性的提升主要集中在溶解性和界面性质[64]。在酶解过程中,还能产生具有健康促进功效的活性肽,如抗癌、抗高血压、免疫调节等活性[65]。

Singh 等[66]通过木瓜蛋白酶水解脱脂米糠蛋白,结果显示随着水解度的增加,米糠水解物的结构弹性增加,其溶解度和消化率都得到了提高,虽然热稳定性和界面性能降低。但是,水解后对抗氧化性能有巨大的积极影响,水解物具有显著的自由基清除能力和还原能力。

Zang 等[67]通过胰蛋白酶水解脱脂米糠蛋白,发现不同水解度的产物性质不同,水解度3%的样品制备的乳液稳定性最好,利用圆二色光谱分析了酶解前后蛋白的二级结构,结果显示米糠蛋白二级结构中β 级折叠物的含量减少了,无规卷曲、α 卷螺旋和β-转角物的含量增加了。这些变化说明米糠蛋白的二级结构水解后变得更灵活,有利于提高其乳化性能[68]。

4 米糠及其下游相关产品在食品中的应用研究

近年来随着米糠稳定化技术的成熟,以及人们对米糠营养价值的认可,对米糠在食品中的应用研究也越来越多,主要应用进展总结如表4。

表4 米糠在食品中的应用进展Table 4 Application progress of rice bran in food

?

4.1 全脂米糠的应用

谢晶等[69]以全脂米糠为原料,采用先淀粉酶酶解,再喷雾干燥的方法制备速溶米糠粉,利用响应面法优化酶解液喷雾干燥的条件,并对米糠粉的速溶性指标进行测定。在最优条件下,酶解得到的米糠液中可溶性碳水化合物达25.1%。通过喷雾干燥所制备的米糠粉冲调性较好,色泽风味具佳。

赵旭等[70]以米糠粉和小麦粉为原料,制作富含膳食纤维的广式月饼。采用单因素及正交实验,优化出米糠广式月饼的最佳工艺配方。饼皮中米糠粉添加量15%,馅料中米糠粉添加量40%,该条件生产的产品口感细腻,风味纯正,品质优良。

Phimolsiripol 等[71]以米糠为原料制作无麸质面包,添加10%的米糠可显著改善面包的品质,面包皮色泽较深,体积更大,硬度较软,营养组分也有所增加,并且感观评价结果优于对照,面包的货架期也延长了,这些都证明米糠组分有潜力用来开发高品质的无麸质面包。

4.2 脱脂米糠的应用

王玉琦等[73]在超临界CO2 状态下通过二次酶解低温脱脂米糠制备米糠粉,以酶解米糠粉得率为指标,先用植酸酶酶解低温脱脂米糠,一次酶解产物的得率为48.2%。经灭酶后再加入质量比为1∶1 的碱性蛋白酶和α-淀粉酶,继续酶解一次酶解后的脱脂米糠,通过条件优化,二次酶解米糠粉的总收率为79.0%。二次酶解米糠粉的收率比常规酶法生产米糠粉收率提高了一成以上,所制备的米糠粉速溶性好,主要营养成分可溶性总糖和蛋白质的总含量大于75%。

李次力等[74]以熟化后的超微脱脂米糠粉为主要原料,研制出一种营养丰富的米糠粉冲剂。该冲剂采用单因素和正交两种实验方法确定了实验最优配方,其中脱脂米糠粉约占20%,最终产品的感官风味良好。

4.3 米糠在食品中的应用趋势

米糠及相关产品在食品中的应用将会越来越广泛,产品可宣称无麸质及清洁标签。米糠纤维可在面条、米粉、饼干、面包、蛋糕中应用,添加量控制在10%左右,增加了产品中膳食纤维的含量,并对口感无显著影响。米糠蛋白可在营养粉、饮料及婴幼儿食品中应用,提供低过敏原的健康食品。

5 食品级米糠商业化产品

国内食品级米糠的开发大多处于实验室或中试阶段,商业化产品较少,而国外相关公司已经开发出米糠系列产品,总结如表5。

表5 国外米糠系列产品Table 5 Rice bran series products abroad

?

如表 5 所示,美国米糠技术公司开发的ProryzaTM P-35 中的米糠蛋白含量为 35%,ProryzaTM PF-50 中的米糠蛋白加膳食纤维的总含量达到 50%以上。日本筑野食品工业株式会社(TSUNO)利用脱脂米糠开发出的Rice PF-60 中米糠蛋白加膳食纤维的总含量达到60%以上,其中蛋白含量约25%。美国Ribus 公司直接将米糠作为营养配料开发了Natural Nu-RICE,其产品营养成分见表6。

表6 Natural Nu-RICE 营养成分[78]Table 6 Nutritional composition of Natural Nu-RICE[78]

?

6 前景展望

在我国,米糠作为食品原料的前提是,砷含量需满足国标要求(<0.5 mg/kg),而国外食品法规中对米糠的砷含量没有限量要求。近几年,益海嘉里研发中心也加大了食品级米糠的产业化研究,目前已经掌握了米糠脱砷技术,米糠纤维和蛋白提取技术,完成了中试实验,并开展了米糠在食品中的系列应用实验,为食品级米糠的商业化奠定了基础。

从米糠的组成及加工现状来看,米糠的利用具有很大的潜能,美国米糠技术公司和日本筑野食品工业株式会社(TSUNO)都有很好的探索,从现有技术及可行性上对米糠的综合利用可总结为图1。其中米糠毛油的利用在国内已经很成熟,稻米油已经实现了商业化。全脂米糠和脱脂米糠粉,以及米糠纤维和蛋白营养功能提升的产品将是未来发展的趋势。

图1 米糠的综合利用Fig.1 Comprehensive utilization of rice bran

“天然、健康、营养”的功能性食品配料已经是食品工业研究的热点和未来的应用发展趋势,随着米糠膳食纤维和米糠蛋白的营养功能得到不断开发,食品级米糠作为低过敏性的功能性食品配料,将具有巨大的市场潜力。

从另一个角度分析,中国消费群体在日常饮食中摄入精米精面的比例非常高,所谓的“坏碳水”占据主要的碳水化合物摄入,这被很多学者认为是不健康消费,它是造成健康问题甚至大比例疾病人群的重要原因,传统食品原料的米糠实际上是膳食纤维的重要来源,利用好米糠资源对健康中国2030 具有重要的意义。

参考文献:

[1] 国家统计局. http://www.stats.gov.cn/tjsj/zxfb/202012/t20201210_1808377.html.State Statistical Bureau. http://www.stats.gov.cn/tjsj/zxfb/202012/t20201210_1808377.html.

[2] 左英秀, 沈军. 稻米加工副产物米糠综合利用的研究[J]. 粮食与食品工业, 2020(27): 11-14.ZUO Y X, SHEN J. Studies on comprehensive utilization of rice bran, a byproduct of rice processing[J]. Cereal & Food Industry,2020(27): 11-14.

[3] 赵鑫, 张子腾, 朱丽丹, 等. 不同品种米糠营养成分含量的相关性分析及米糠与稻米成分的聚类分析[J]. 食品工业科技,2012(1): 52-55.ZHAO X, ZHANG Z T, ZHU L D, et al. Correlativity and cluster analysis of nutrient content of rice and rice bran from different areas[J]. Science and Technology of Food Industry, 2012(1):52-55.

[4] 张志宏, 卢淑雯. 米糠的营养功效及在饲料中的应用进展[J].饲料研究, 2020(10): 139-142.ZHANG Z H, LU S W. Nutritional function of rice bran and its application in feed[J]. Feed Research, 2020(10): 139-142.

[5] 王昕. 米糠蛋白利用的研究进展[J]. 现代食品, 2020(18):65-67.WANG X. Research progress of rice bran protein utilization[J].Modern Food, 2020(18): 65-67.

[6] 姚惠源. 稻米深加工[M]. 北京: 化学出版社, 2004.YAO H Y. Deep processing of rice[M]. Beijing: Chemical Press,2004.

[7] 李喆, 翟爱华. 米糠蛋白抗氧化肽的制备及初步分离[J]. 黑龙江八一农垦大学学报, 2012(24): 56-59.LI Z, ZHAI A H. Preparation and preliminary separation of antioxidant peptide of rice bran protein[J]. Journal of Heilongjiang Bayi Agricultural University, 2012(24): 56-59.

[8] JARIWALLA R. J. Rice-bran products: phytonutrients with potential applications in preventive and clinical medicine[J].Drugs Under Experiment and Clinical Research, 2001(27):17-26.

[9] QURESHI A A, SAMA S A, KHAN F A. Effect of stabilized rice bran, it’s soluble and fiber fractions on blood glucose levels and serum lipid parameters in humans with diabetes mellitus types I and II[J]. Journal of Nutritional Biochemistry, 2002(13): 175-187.

[10] WILSON T, IDREIS H, TAYLOR C, et al. Whole fat rice bran reduces the development of early aortic atherosclerosis in hypercholesterolemic hamsters compared with wheat bran[J].Nutrition Research, 2002(22): 1319-1332.

[11] FUKUSHIMA M, FUJII S, YOSHIMURA Y, et al. Effect of rice bran on intraintestinal fermentation and cholesterol metabolism in cecectomized rats[J]. Nutrition Research, 1999(19): 235-245.

[12] 林德荣. 可溶性膳食纤维提取、理化性质及其生理功能的研究[D]. 南昌大学, 2008.LIN D R. Study of soluble dietary fiber extracted, physical and chemical properties and physiological function[D]. Nanchang University, 2008.

[13] 肖春玲. 人类的第七大营养素: 膳食纤维[J]. 中国食物与营养, 2001(3): 54-55.XIAO C L. The seventh nutrient of human: dietary fiber[J]. Food and Nutrition in China, 2001(3): 54-55.

[14] SILVA C, OLIVEIRA J, SOUZA R, et al. Effect of a rice bran fiber diet on serum glucose levels of diabetic patients in Brazil[J]. Archivos latinoamericanos de nutrición, 2005(55):23-27.

[15] 丁晓萌, 侯坤友, 胡晓祎, 等. 脱脂米糠可溶性膳食纤维对小肠葡萄糖吸收和转运的影响及其作用机制[J]. 食品科学,2020(41): 183-189.DING X M, HOU K Y, HU X W, et al. Effect of soluble dietary fiber from defatted rice bran on glucose absorption and transport in small intestine and its mechanism of action[J]. Food Science,2020(41): 183-189.

[16] 刘倩, 范誉川, 刘素诗, 等. 米糠粕不溶性膳食纤维理化性质及对高脂大鼠肠道菌群的影响[J/OL]. 食品科学: 1-10[2021-03-16]. http://kns.cnki.net/kcms/detail/11.2206.ts.20201120.1457.065. html.LIU Q, FAN Y C, LIU S S, et al. Physicochemical properties of insoluble dietary fibers from defatted rice bran and its effects on high fat rats intestinal microbiota[J/OL]. Food Science: 1-10[2021-03-16]. http://kns.cnki.net/kcms/detail/11.2206.ts.20201120.1457. 065. html.

[17] QI J, LI Y, YOKOYAMA W, et al. Cellulosic fraction of rice bran fibre alters the conformation and inhibits the activity of porcine pancreatic lipase[J]. Journal of Functional Foods,2015(19): 39-48.

[18] 黄萍, 林亲录, 朱凤霞, 等. 米糠水溶性膳食纤维理化特性及抗氧化性[J]. 食品科学, 2017(38): 14-19.HUANG P, LIN Q L, ZHU F X, et al. Physicochemical properties and antioxidant activity of water-soluble dietary fiber from rice bran[J]. Food Science, 2017(38): 14-19.

[19] SERA N, MORITA K, NAGASOE M, et al. Binding effect of polychlorinated compounds and environmental carcinogens on rice bran fiber[J]. Journal of Nutritional Biochemistry, 2005(16):50-58.

[20] HU G, HUANG S, HAO C, et al. Binding of four heavy metals to hemicelluloses from rice bran[J]. Food Research International,2010(43): 203-206.

[21] HELM R M, BURKS A W. Hypoallergenicity of rice bran protein[J]. Cereal Food World, 1996(41): 839-843.

[22] KAWAMURA Y, MURAMOTO M, WALDRON, K W, et al.Anti-tumorigenic and immune active protein and peptide factors in foodstuffs. 2. Anti-tumorigenic factors in rice bran[J]. Food Cancer Prevention, 1993: 331-401.

[23] MORITA T, KIRIYAMA S. Mass production method for rice protein isolate and nutritional evaluation[J]. Food Science,1993(58): 1393-1396.

[24] ZHANG H, YOKOYAMA W, HUI Z. Concentration-dependent displacement of cholesterol in micelles by hydrophobic rice bran protein hydrolysates[J]. Journal of the Science of Food &Agriculture, 2012(92): 1395-1401.

[25] WANG J, SHIMADA M, KATO Y, et al. Cholesterol-lowering effect of rice bran protein containing bile acid-binding proteins[J].Bioscience, Biotechnology & Biochemistry, 2015(79): 456-461.

[26] URAIPONG C, JIAN Z. In vitro digestion of rice bran proteins produces peptides with potent inhibitory effects on α-glucosidase and angiotensin I converting enzyme[J]. Journal of the Science of Food & Agriculture, 2018(98): 758-766.

[27] SHOBAKO N, OGAWA Y, ISHIKADO A, et al. A novel anti-hypertensive peptide identified in thermolysin-digested rice bran[J]. Molecular Nutrition & Food Research, 2018: 1700732.

[28] BOONLOH K, KUKONGVIRIYAPAN V, KONGYINGYOES B, et al. Rice bran protein hydrolysates improve insulin resistance and decrease pro-inflammatory cytokine gene expression in rats fed a high carbohydrate-high fat diet[J].Nutrients, 2015(7): 6313-6329.

[29] PHONGTHAI S, D’AMICO S, SCHOENLECHNER R, et al.Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion[J].Food Chemistry, 2018(240): 156-164.

[30] WATTANASIRITHAM L, THEERAKULKAIT C,WICKRAMASEKARA S, et al. Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein[J]. Food Chemistry, 2016(192): 156-162.

[31] LI R, HETTIARACHCHY N, MAHADEVAN M. Apoptotic pathways in human breast cancer cell models (MCF-7 and MDA-MB-231) induced by rice bran derived pentapeptide[J].International Journal of Research in Medical and Health Sciences, 2014(4): 13-21.

[32] KANNAN A, HETTIARACHCHY N, JOHNSON M, et al.Human colon and liver cancer cell proliferation inhibition by peptide hydrolysates derived from heat-stabilized defatted rice bran[J]. Journal of Agricultural and Food Chemistry, 2008(56):11643-11647.

[33] TANIGUCHI M, SAITO K, AIDA R, et al. Wound healing activity and mechanism of action of antimicrobial and lipopolysaccharide-neutralizing peptides from enzymatic hydrolysates of rice bran proteins[J]. Journal of Bioscience and Bioengineering, 2019(128): 142-148.

[34] ORTHOEFER F T. Rice bran oil. In Bailey’s Industrial Oil and Fat Products[M]. 6th ed.; Shahidi F., Ed. John Wiley Sons:Hoboken, NJ, USA, 2005(6): 465-489.

[35] CHEONG L Z, XU X B. Rice bran and rice bran oil[M]. 2019,Amsterdam, AOCS press.

[36] 李伦, 张晖, 王兴国, 等. 超微粉碎对脱脂米糠膳食纤维理化特性及组成成分的影响[J]. 中国油脂, 2009(34): 56-59.LI L, ZHANG H, WANG X G, et al. Effect of supermicromilling on the physicochemical properties and composition of dietary fibre prepared from defatted rice bran[J]. China Oils and Fats, 2009(34): 56-59.

[37] 张宏邦, 罗洁, 易翠平, 等. 稻米膳食纤维的提取、改性及应用研究进展[J]. 中国粮油学报, 2019 (6): 141-146.ZHANG H B, LUO J, YI C P, et al. Advances in extraction,modification and application of rice dietary fiber[J]. Journal of the Chinese Cereals and Oils Association, 2019 (6): 141-146.

[38] 张汪, 时超, 褚莹莹, 等. 米糠膳食纤维提取工艺的研究进展[J]. 食品工程, 2016(4): 1-3.ZHANG W, SHI C, CHU Y Y, et al. Research of rice bran dietary fiber extraction process[J]. Food Engineering, 2016(4):1-3.

[39] 杜双奎, 魏益民, 张波. 挤压膨化过程中物料组分的变化分析[J]. 中国粮油学报, 2005(3): 39-43.DU S K, WEI Y M, ZHANG B. Changes of material components during extrusion[J]. Journal of the Chinese Cereals and Oils Association, 2005(3): 39-43.

[40] 王旭, 梁栋, 徐杨. 挤压膨化辅助提取米糠可溶性膳食纤维及其特性研究[J]. 中国粮油学报, 2017(32): 153-158.WANG X, LIANG D, XU Y. Extrusion-assisted extraction process of rice bran soluble dietary fiber and its properties[J].Journal of the Chinese Cereals and Oils Association, 2017(32):153-158.

[41] DANG T T, VASANTHAN T. Modification of rice bran dietary fiber concentrates using enzyme and extrusion cooking[J]. Food Hydrocolloid, 2019(89): 773-782.

[42] 王大为, 丰艳, 李毅丽. 超临界CO2处理对米糠纤维物性的影响[J]. 食品科学, 2010(31): 143-147.WANG D W, FENG Y, LI Y L. Effect of supercritical CO2 on physical properties of dietary fiber from treated rice bran[J].Food Science, 2010(31): 143-147.

[43] 周颖, 朱玉杰, 贾俊强. 米糠膳食纤维的制备、改性及应用研究进展[J]. 现代面粉工业, 2020(6): 32-37.ZHOU Y, ZHU Y J, JIA J Q. Research progress on preparation,modification and application of rice bran dietary fiber[J].Modern Flour Milling Industry, 2020(6): 32-37.

[44] QI J, LI Y, MASAMBA K G. The effect of chemical treatment on the in vitro hypoglycemic properties of rice bran insoluble dietary fiber[J]. Food Hydrocolloid, 2016(52): 699-706.

[45] 张光, 吕铭守, 张思琪. 米糠膳食纤维双酶法改性研究[J]. 包装与食品机械, 2020(38): 13-18.ZHANG G, LV M S, ZHANG S Q. Study on modification of soluble dietary fibers in rice bran by double enzyme method[J].Packaging and Food Machinery, 2020(38): 13-18.

[46] AGBOOLA S, DARREN N G, MILLS D. Characterisation and functional properties of Australian rice protein isolates[J].Journal of Cereal Science, 2005(41): 283-290.

[47] WANG C, XU F, LI D, et al. Physico-chemical and structural properties of four rice bran protein fractions based on the multiple solvent extraction method[J]. Czech Journal of Food Science, 2015(33): 283-291.

[48] ZHANG Y P, WANG B, ZHANG W N, et al. Effects and mechanism of dilute acid soaking with ultrasound pretreatment on rice bran protein extraction[J]. Journal of Cereal Science,2019(87): 318-324.

[49] FREDERIEK F S, KIM W. Preparation and characterization of rice protein isolates[J]. Journal of the American Oil Chemists Society, 2000(8): 885-889.

[50] ANDERSON A K, GURAYA H S. Extractability of protein in physically processed rice bran[J]. Journal of the American Oil Chemists Society, 2001(78): 969-972.

[51] GUAN X, YAN H. Optimization of viscozyme L-assisted extraction of oat bran protein using response surface methodology[J]. Food Chemistry. 2008(106): 345-351.

[52] TANG S, HETTIARACHCHY N S, ESWARANANDAM S.Protein extraction from heat-stabilized defatted rice bran: II. The role of amylase, celluclast, and viscozyme[J]. Journal of Food Science, 2003(68): 471-475.

[53] SHIH F F, CHAMPAGNE E T, DAIGLE K, et al. Use of enzymes in the processing of protein products from rice bran and rice flour[J]. Nahrung-food, 1999(43): 14-18.

[54] WANG M, HETTIARACHCHY N S, QI M, et al. Preparation and functional properties of rice bran protein isolate[J]. Journal of Agricultural & Food Chemistry, 1999(47): 411-416.

[55] HAMADA J S. Use of protease to enhance solubilization of rice bran proteins[J]. Journal of Food Biochemistry, 1999(23):307-321.

[56] TANG S, HETTIARACHCHY N S, SHELLHAMMER T H.Protein extraction from heat-stabilized defatted rice bran: I.Physical processing and enzyme treatments[J]. Journal of Agricultural & Food Chemistry, 2002(50): 7444-7448.

[57] HAMADA J S. Characterization and functional properties of rice bran proteins modified by commercial exoproteases and endoproteases[J]. Journal of Food Science, 2000(65): 305-310.

[58] MUSTAFA A, TURNER C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review[J].Analytica Chimica Acta, 2011(703): 8-18.

[59] WIBOONSIRIKUL J, KIMURA Y, KADOTA M, et al.Properties of extracts from defatted rice bran by its subcritical water treatment[J]. Journal of Agricultural & Food Chemistry,2007(55): 8759-8765.

[60] SEREEWATTHANAWUT I, PRAPINTIP S, WATCHIRARUJI K, et al. Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis[J]. Bioresource Technology,2008(99): 555-561.

[61] 张慧娟, 刘英丽, 王静. 亚临界水提取热稳定脱脂米糠蛋白[J]. 食品科学, 2014(35): 5-11.ZHANG H J, LIU Y L, WANG J. Heat-stable defatted rice bran protein extracted by subcritical water extraction[J]. Food Science, 2014(35): 5-11.

[62] WATCHARARUJI K, GOTO M, SASAKI M, et al. Value-added subcritical water hydrolysate from rice bran and soybean meal[J]. Bioresource Technology, 2008(99): 6207-6213.

[63] FABIAN C, JU Y H. A review on rice bran protein: Its properties and extraction methods[J]. Critical Reviews in Food Science and Nutrition, 2011(51): 816-827.

[64] WANI I, SOGI D, SHIVHARE U, et al. Physico-chemical and functional properties of native and hydrolyzed kidney bean(Phaseolus vulgaris L.) protein isolates[J]. Food Research International, 2015(76): 11-18.

[65] GARCIA M, PUCHALSKA P, ESTEVE C, et al. Vegetable foods: a cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities[J]. Talanta, 2013(105): 328-349.

[66] SINGH T P, SIDDIQI R A, SOGI D S. Enzymatic modification of rice bran protein: Impact on structural, antioxidant and functional properties[J]. LWT-Food Science and Technology,2021(138): 110648.

[67] ZANG X, YUE C, WANG Y, et al. Effect of limited enzymatic hydrolysis on the structure and emulsifying properties of rice bran protein[J]. Journal of Cereal Science, 2019(85): 168-174.

[68] JIANG Z, SONTAG-STROHM T, SALOVAARA H, et al. Oat protein solubility and emulsion properties improved by enzymatic deamidation[J]. Journal of Cereal Science, 2015(64):126-132.

[69] 谢晶, 周裔彬, 郑翔宇. 酶解辅助喷雾干燥法制备速溶米糠粉工艺研究[J]. 食品研究与开发, 2017(38): 105-109.XIE J, ZHOU Y B, ZHENG X Y. Study on the preparation of instant rice bran powder by enzymatic hydrolysis followed by spray drying[J]. Food Research and Development, 2017(38):105-109.

[70] 赵旭, 张家成, 孙小惠. 米糠粉在广式月饼中的应用研究[J].哈尔滨商业大学学报, 2015(31): 598-602.ZHAO X, ZHANG J C, SUN X H. Research and application of cantonese-style moon cake made of rice bran[J]. Journal of Harbin University of Commerce, 2015(31): 598-602.

[71] PHIMOLSIRIPOL Y, MUKPRASIRT A, SCHOENLECHNER R. Quality improvement of rice-based gluten-free bread using different dietary fibre fractions of rice bran[J]. Journal of Cereal Science, 2012(56): 389-395.

[72] DELAHAYE E, JIMENEZ P, PEREZ E. Effect of enrichment with high content dietary fiber stabilized rice bran flour on chemical and functional properties of storage frozen pizzas[J].Journal of Food Engineering, 2005(68): 1-7.

[73] 王玉琦, 王东华, 李婷婷. 超临界CO2条件下二次酶解米糠的研究[J]. 中国粮油学报, 2018(33): 1-6.WANG Y Q, WANG D H, LI T T. Secondary enzymolysis of rice bran under supercritical carbon dioxide[J]. Journal of the Chinese Cereals and Oils Association, 2018(33): 1-6.

[74] 李次力, 刘天怡, 杨萍. 超微脱脂米糠粉制备速溶冲剂的研究[J]. 食品工业科技, 2014(35): 241-244.LI C L, LIU T Y, YANG P. Study on the defatted rice bran instant granules[J]. Science and Technology of Food Industry, 2014(35):241-244.

[75] RAUNGRUSMEE S, SHRESTHA S, SADIQ M B, et al.Influence of resistant starch, xanthan gum, inulin and defatted rice bran on the physicochemical, functional and sensory properties of low glycemic gluten-free noodles[J]. LWT- Food Science and Technology, 2020(126): 109279.

[76] HU G, YU W. Effect of hemicellulose from rice bran on low fat meatballs chemical and functional properties[J]. Food Chemistry,2015(186): 239-243.

[77] JIA M Y, YU Q, CHEN J J, et al. Physical quality and in vitro starch digestibility of biscuits as affected by addition of soluble dietary fiber from defatted rice bran[J]. Food Hydrocolloids,2020(99): 105349.

[78] https://ribus.com/nu-rice/

Research Progress and Outlook of Food Grade Rice Bran

MA Zong-hui, YIN Bao-ru, ZHANG Hai, XU Xue-bing✉(Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China)

Abstract: This paper reviews the nutrition and utilization of rice bran and the future development of food grade rice bran. Rice bran has high nutritional value and rich biological activities. The utilization of rice bran fiber is mainly through modification. The combination of physical and enzymatic methods and supercritical CO2 treatment are beneficial to improve the soluble dietary fiber content and fiber extraction rate. The utilization of rice bran protein includes extraction and modification. The study of extraction of rice bran protein focuses on the combination of physical and enzymatic methods. Moreover, subcritical water, which is a new green extraction technology, has gradually become a research hotspot. The rice bran protein is mainly modified using enzymatic method to improve the function and biological activity of the protein. Therefore,studies on the development of food grade rice bran will be a trend in the future.

Key words: food grade rice bran; rice bran fiber; rice bran protein; dietary fiber; defatted rice bran

中图分类号:TS210.9

文献标识码:A

文章编号:1007-7561(2021)05-0011-10

网络首发时间:2021-08-24 15:51:05

网络首发地址:https://kns.cnki.net/kcms/detail/11.3863.TS.20210824.1335.010.html

DOI: 10.16210/j.cnki.1007-7561.2021.05.002

马宗会,殷宝茹,张海,等. 食品级米糠的研究进展及前景展望[J]. 粮油食品科技, 2021, 29(5): 11-20.MA Z H, YIN B R, ZHANG H, et al. Research progress and outlook of food grade rice bran[J]. Science and Technology of Cereals, Oils and Foods, 2021, 29(5): 11-20.

收稿日期:2021-05-10

基金项目:企业合作创新项目(WRD-02-A-18-004)

Supported by: Enterprise Cooperative Innovation Project (No.WRD-02-A-18-004)

作者简介:马宗会,男,1980 年出生,硕士,高级主任工程师,研究方向为脂肪替代物、风味油脂、油脂加工副产物利用及污染物控制。E-mail: [email protected].

通讯作者:徐学兵,男,1962 年出生,博士,教授,博士生导师,研究方向为脂质科学与技术、绿色油脂加工、酶工程、植物基蛋白、功能食品及生物质能源等。E-mail: [email protected].



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3