全基因组重测序数据分析

您所在的位置:网站首页 简化基因组数据分析 全基因组重测序数据分析

全基因组重测序数据分析

2022-10-17 08:46| 来源: 网络整理| 查看: 265

转自:/news/research/95875.html

1. 简介(Introduction)

通过高通量测序识别发现de novo的somatic和germ line 突变,结构变异-SNV,包括重排突变(deletioin, duplication 以及copy number variation)以及SNP的座位;针对重排突变和SNP的功能性进行综合分析;我们将分析基因功能(包括miRNA),重组率(Recombination)情况,杂合性缺失(LOH)以及进化选择与mutation之间的关系;以及这些关系将怎样使得在disease(cancer)genome中的mutation产生对应的易感机制和功能。我们将在基因组学以及比较基因组学,群体遗传学综合层面上深入探索疾病基因组和癌症基因组。

实验设计与样本

(1)Case-Control 对照组设计 ;(2)家庭成员组设计:父母-子女组(4人、3人组或多人);

初级数据分析

1.数据量产出: 总碱基数量、Total Mapping Reads、Uniquely Mapping Reads统计,测序深度分析。2.一致性序列组装:与参考基因组序列(Reference genome sequence)的比对分析,利用贝叶斯统计模型检测出每个碱基位点的最大可能性基因型,并组装出该个体基因组的一致序列。3.SNP检测及在基因组中的分布:提取全基因组中所有多态性位点,结合质量值、测序深度、重复性等因素作进一步的过滤筛选,最终得到可信度高的SNP数据集。并根据参考基因组信息对检测到的变异进行注释。4.InDel检测及在基因组的分布: 在进行mapping的过程中,进行容gap的比对并检测可信的short InDel。在检测过程中,gap的长度为1~5个碱基。对于每个InDel的检测,至少需要3个Paired-End序列的支持。5.Structure Variation检测及在基因组中的分布: 能够检测到的结构变异类型主要有:插入、缺失、复制、倒位、易位等。根据测序个体序列与参考基因组序列比对分析结果,检测全基因组水平的结构变异并对检测到的变异进行注释。

高级数据分析

1.测序短序列匹配(Read Mapping)(1)屏蔽掉Y染色体上假体染色体区域(pseudo-autosomal region), 将Read与参考序列NCBI36进行匹配(包括所有染色体,未定位的contig,以及线粒体序列mtDNA(将用校正的剑桥参考序列做替代))。采用标准序列匹配处理对原始序列文件进行基因组匹配, 将Read与参考基因组进行初始匹配;给出匹配的平均质量得分分布;(2)碱基质量得分的校准。我们采用碱基质量校准算法对每个Read中每个碱基的质量进行评分,并校准一些显著性误差,包括来自测序循环和双核苷酸结构导致的误差。(3)测序误差率估计。 pseudoautosomal contigs,short repeat regions(包括segmental duplication,simple repeat sequence-通过tandem repeat识别算法识别)将被过滤;

2. SNP Calling 计算 (SNP Calling)我们可以采用整合多种SNP探测算法的结果,综合地,更准确地识别出SNP。通过对多种算法各自识别的SNP进行一致性分析,保留具有高度一致性的SNP作为最终SNP结果。这些具有高度一致性的SNP同时具有非常高的可信度。在分析中使用到的SNP识别算法包括基于贝叶斯和基因型似然值计算的方法,以及使用连锁不平衡LD或推断技术用于优化SNP识别检出的准确性。

统计SNV的等位基因频率在全基因组上的分布稀有等位基因数目在不同类别的SNV中的比率分布(a);SNV的类别主要考虑:(1)无义(nonsense),(2)化学结构中非同义,(3)所有非同义,(4)保守的非同义,(5)非编码,(6)同义,等类型SNV; 另外,针对保守性的讨论,我们将分析非编码区域SNV的保守型情况及其分布(图a, b)

3. 短插入/缺失探测(Short Insertion /Deletion (Indel)Call)(1). 计算全基因组的indel变异和基因型检出值的过程计算过程主要包含3步:(1)潜在的indel的探测;(2)通过局部重匹配计算基因型的似然值;(3)基于LD连锁不平衡的基因型推断和检出识别。Indel在X,Y染色体上没有检出值得出。(2). Indel 过滤处理

4. 融合基因的发现(Fusion gene Discovery)选择注释的基因信息来自于当前最新版本的Ensemble Gene数据库,RefSeq数据库和Vega Gene数据库。下面图例给出的是融合基因的形成,即来自不同染色体的各自外显子经过重组形成融合基因的模式图。

5.  结构变异(Structure Variation)结构变异(Structure Variation-SV)是基因组变异的一类主要来源,主要由大片段序列(一般>1kb)的拷贝数变异(copy number variation, CNV)以及非平衡倒位(unbalance inversion)事件构成。目前主要一些基因组研究探测识别的SV大约有20,000个(DGV数据库)。在某些区域上,甚至SV形成的速率要大于SNP的速率,并与疾病临床表型具有很大关联。我们不仅可以通过测序方式识别公共的SV,也可以识别全新的SV。全新的SV的生成一般在germ line和突变机制方面都具有所报道。然而,当前对SV的精确解析需要更好的算法实现。同时,我们也需要对SV的形成机制要有更重要的认知,尤其是SV否起始于祖先基因组座位的插入或缺失,而不简单的根据等位基因频率或则与参考基因组序列比对判断。SV的功能性也结合群体遗传学和进化生物学结合起来,我们综合的考察SV的形成机制类别。

SV形成机制分析,包括以下几种可能存在的主要机制的识别发现:(A)同源性介导的直系同源序列区段重组(NAHR);(B)与DNA双链断裂修复或复制叉停顿修复相关的非同源重组(NHR);(C)通过扩展和压缩机制形成可变数量的串联重复序列(VNTR);(D)转座元件插入(一般主要是长/短间隔序列元件LINE/SINE或者伴随TEI相关事件的两者的组合)。结构变异探测和扩增子(Amplicon)的探测与识别分析:如下图所示

6. 测序深度分析测序深度分析就是指根据基因组框内覆盖度深度与期望覆盖度深度进行关联,并识别出SV。我们也将采用不同算法识别原始测序数据中的缺失片段(deletion)和重复片段(duplication)。

7. SV探测识别结果的整合与FDR推断(可选步骤)(1). PCR或者芯片方式验证SV(2). 计算FDR-错误发现率(配合验证试验由客户指定)(3)  筛选SV检出结果用于SV的合并和后续分析:我们通过不同方式探测识别SV的目的极大程度的检出SV,并且降低其FDR(



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3