离散数学答案 第二版 课后答案

您所在的位置:网站首页 离散数学屈婉玲教材答案第二版 离散数学答案 第二版 课后答案

离散数学答案 第二版 课后答案

2024-07-12 14:58| 来源: 网络整理| 查看: 265

离散数学答案屈婉玲版

第二版高等教育出版社课后答案

第一章部分课后习题参考答案

16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)?0∨(0∧1) ?0

(2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0.

(3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0

(4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1

17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。”

答:p: π是无理数 1

q: 3是无理数0

r: 2是无理数 1

s:6能被2整除 1

t: 6能被4整除0

命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型:

(4)(p→q) →(?q→?p)

(5)(p∧r) ?(?p∧?q)

(6)((p→q) ∧(q→r)) →(p→r)

答:(4)

p q p→q ?q ?p ?q→?p (p→q)→(?q→?p)

0 0 1 1 1 1 1

0 1 1 0 1 1 1

1 0 0 1 0 0 1

1 1 1 0 0 1 1

所以公式类型为永真式

(5)公式类型为可满足式(方法如上例)

(6)公式类型为永真式(方法如上例)

第二章部分课后习题参考答案

3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.

(1) ?(p∧q→q)

(2)(p→(p∨q))∨(p→r)

(3)(p∨q)→(p∧r)

答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式

(3)P q r p∨q p∧r (p∨q)→(p∧r)

0 0 0 0 0 1

0 0 1 0 0 1

0 1 0 1 0 0

0 1 1 1 0 0

1 0 0 1 0 0

1 0 1 1 1 1

1 1 0 1 0 0

1 1 1 1 1 1

所以公式类型为可满足式

4.用等值演算法证明下面等值式:

(2)(p→q)∧(p→r)?(p→(q∧r))

(4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q)

证明(2)(p→q)∧(p→r)

? (?p∨q)∧(?p∨r)

??p∨(q∧r))

?p→(q∧r)

(4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q)

?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q)

?1∧(p∨q)∧?(p∧q)∧1

?(p∨q)∧?(p∧q)

5.求下列公式的主析取范式与主合取范式,并求成真赋值

(1)(?p→q)→(?q∨p)

(2)?(p→q)∧q∧r

(3)(p∨(q∧r))→(p∨q∨r)

解:

(1)主析取范式

(?p →q)→(?q ∨p)

??(p ∨q)∨(?q ∨p)

?(?p ∧?q)∨(?q ∨p)

? (?p ∧?q)∨(?q ∧p)∨(?q ∧?p)∨(p ∧q)∨(p ∧?q) ? (?p ∧?q)∨(p ∧?q)∨(p ∧q) ?320m m m ∨∨

?∑(0,2,3)

主合取范式:

(?p →q)→(?q ∨p)

??(p ∨q)∨(?q ∨p) ?(?p ∧?q)∨(?q ∨p)

?(?p ∨(?q ∨p))∧(?q ∨(?q ∨p)) ?1∧(p ∨?q) ?(p ∨?q) ? M 1 ?∏(1) (2) 主合取范式为:

?(p →q)∧q ∧r ??(?p ∨q)∧q ∧r ?(p ∧?q)∧q ∧r ?0 所以该式为矛盾式.

主合取范式为∏(0,1,2,3,4,5,6,7) 矛盾式的主析取范式为 0 (3)主合取范式为:

(p ∨(q ∧r))→(p ∨q ∨r)

??(p ∨(q ∧r))→(p ∨q ∨r)

?(?p ∧(?q ∨?r))∨(p ∨q ∨r)

?(?p ∨(p ∨q ∨r))∧((?q ∨?r))∨(p ∨q ∨r))

?1∧1 ?1

所以该式为永真式.

永真式的主合取范式为 1

主析取范式为∑(0,1,2,3,4,5,6,7)

第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:

(2)前提:p→q,?(q∧r),r

结论:?p

(4)前提:q→p,q?s,s?t,t∧r

结论:p∧q

证明:(2)

①?(q∧r) 前提引入

②?q∨?r ①置换

③q→?r ②蕴含等值式

④r 前提引入

⑤?q ③④拒取式

⑥p→q 前提引入

⑦¬p(3)⑤⑥拒取式

证明(4):

①t∧r 前提引入

②t ①化简律

③q?s 前提引入

④s?t 前提引入

⑤q?t ③④等价三段论

⑥(q→t)∧(t→q) ⑤置换

⑦(q→t)⑥化简

⑧q ②⑥假言推理

⑨q→p 前提引入

⑩p ⑧⑨假言推理

(11)p∧q ⑧⑩合取

15在自然推理系统P中用附加前提法证明下面各推理:

(1)前提:p→(q→r),s→p,q

结论:s→r

证明

①s 附加前提引入

②s→p 前提引入

③p ①②假言推理

④p→(q→r) 前提引入

⑤q→r ③④假言推理

⑥q 前提引入

⑦r ⑤⑥假言推理

16在自然推理系统P中用归谬法证明下面各推理:

(1)前提:p→?q,?r∨q,r∧?s

结论:?p

证明:

①p 结论的否定引入

②p→﹁q 前提引入

③﹁q ①②假言推理

④¬r∨q 前提引入

⑤¬r ④化简律

⑥r∧¬s 前提引入

⑦r ⑥化简律

⑧r∧﹁r ⑤⑦合取

由于最后一步r∧﹁r 是矛盾式,所以推理正确.

第四章部分课后习题参考答案

3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命

题的真值:

(1) 对于任意x,均有2=(x+)(x).

(2) 存在x,使得x+5=9.

其中(a)个体域为自然数集合.

(b)个体域为实数集合.

解:

F(x): 2=(x+)(x).

G(x): x+5=9.

(1)在两个个体域中都解释为)

?,在(a)中为假命题,在(b)中为真命题。

xF

(x

(2)在两个个体域中都解释为)

?,在(a)(b)中均为真命题。

(x

xG

4. 在一阶逻辑中将下列命题符号化:

(1) 没有不能表示成分数的有理数.

(2) 在北京卖菜的人不全是外地人.

解:

(1)F(x): x能表示成分数

H(x): x是有理数

命题符号化为: ))

F

x∧

?

??

x

H

)

(

(x

(

(2)F(x): x是北京卖菜的人

H(x): x是外地人

命题符号化为: ))

F

??

x

x→

(x

(

)

(

H

5. 在一阶逻辑将下列命题符号化:

(1) 火车都比轮船快.

(3) 不存在比所有火车都快的汽车.

解:

(1)F(x): x是火车; G(x): x是轮船; H(x,y): x比y快

命题符号化为: ))

F

x

G

y

?

y

x→

?

))

(

,

(

)

x

((y

(

H

(2) (1)F(x): x是火车; G(x): x是汽车; H(x,y): x比y快

命题符号化为: )))

y

x

F

G

y→

??

?

x

(

)

(

,

(

)

x

H

(y

(

9.给定解释I如下:

(a) 个体域D为实数集合R.

(b) D中特定元素=0.

(c) 特定函数(x,y)=x y,x,y D

∈.

(d) 特定谓词(x,y):x=y,(x,y):x

∈.

说明下列公式在I下的含义,并指出各公式的真值:

(1)))

y

G

x?

?

?

x

y

,

)

(

(

(y

F

x

,

(2)))

x

y

a

f

F

?

x→

G

?

y

)

(

,

x

),

(y

,

(

(

答:(1) 对于任意两个实数x,y,如果x

(2) 对于任意两个实数x,y,如果x-y=0, 那么x

10. 给定解释I如下:

(a)个体域D=N(N为自然数集合).

(b) D中特定元素=2.

(c) D上函数=x+y,(x,y)=xy.

(d) D上谓词(x,y):x=y.

说明下列各式在I下的含义,并讨论其真值.

(1)xF(g(x,a),x)

(2)x y(F(f(x,a),y)→F(f(y,a),x)

答:(1) 对于任意自然数x, 都有2x=x, 真值0.

(2) 对于任意两个自然数x,y,使得如果x+2=y, 那么y+2=x. 真值0.

11. 判断下列各式的类型:

(1)

(3) yF(x,y).

解:(1)因为1

q

p

p

p为永真式;

q

?

→p

)

?

)

(?

(

?

所以为永真式;

(3)取解释I个体域为全体实数

F(x,y):x+y=5

所以,前件为任意实数x存在实数y使x+y=5,前件真;

后件为存在实数x对任意实数y都有x+y=5,后件假,]

此时为假命题

再取解释I 个体域为自然数N , F(x,y)::x+y=5

所以,前件为任意自然数x 存在自然数y 使x+y=5,前件假。此时为假命题。

此公式为非永真式的可满足式。 13. 给定下列各公式一个成真的解释,一个成假的解释。

(1) (F(x)

(2) x(F(x)G(x)H(x)) 解:(1)个体域:本班同学

F(x):x 会吃饭, G(x):x 会睡觉.成真解释

F(x):x 是泰安人,G(x):x 是济南人.(2)成假解释 (2)个体域:泰山学院的学生

F(x):x 出生在山东,G(x):x 出生在北京,H(x):x 出生在江苏,成假解释. F(x):x 会吃饭,G(x):x 会睡觉,H(x):x 会呼吸. 成真解释.

第五章部分课后习题参考答案

5.给定解释I如下: (a)个体域D={3,4}; (b))(x f 为3)4(,4)3(==f f

(c)1)3,4()4,3(,0)4,4()3,3(),(====F F F F y x F 为. 试求下列公式在I下的真值. (1)),(y x yF x ??

(3))))(),((),((y f x f F y x F y x →?? 解:(1) ))4,()3,((),(x F x F x y x yF x ∨????

? ))4,4()3,4(())4,3()3,3((F F F F ∨∧∨ ?1)01()10(?∨∧∨

(2) )))(),((),((y f x f F y x F y x →??

))))4(),(()4,(()))3(),(()3,(((f x f F x F f x f F x F x →∧→??

)))3),(()4,(())4),(()3,(((x f F x F x f F x F x →∧→??

)))3),3(()4,3(())4),3(()3,3(((f F F f F F →∧→?

)))3),4(()4,4(())4),4(()3,4(((f F F f F F →∧→∧

)))3,4()4,3(())4,4(0((F F F →∧→?)))3,3(0())4,3(1((F F →∧→∧

)11()00(→∧→?)00()11(→∧→∧1?

12.求下列各式的前束范式。

(1)),()(y x yG x xF ?→?

(5))),()((),(2121211x x G x x H x x F x ??→→? (本题课本上有错误) 解:(1) ),()(y x yG x xF ?→?),()(y t yG x xF ?→??)),()((y t G x F y x →??? (5) )),()((),(2121211x x G x x H x x F x ??→→?

)),()((),(2323211x x G x x H x x F x ??→→?? )),()((),(2332411x x G x H x x x F x ?→?→?? ))),()((),((2334121x x G x H x x F x x ?→→???

15.在自然数推理系统F 中,构造下面推理的证明:

(1) 前提: ))())()((()(y R y G y F y x xF →∨?→?,)(x xF ?

结论: ?xR(x)

(2) 前提: ?x(F(x)→(G(a)∧R(x))), xF(x) 结论:x(F(x)∧R(x)) 证明(1)

①)(x xF ? 前提引入 ②F(c) ①EI

③))())()((()(y R y G y F y x xF →∨?→? 前提引入 ④))())()(((y R y G y F y →∨? ①③假言推理 ⑤(F(c)∨G(c))→R(c)) ④UI ⑥F(c)∨G(c) ②附加 ⑦R(c) ⑤⑥假言推理 ⑧?xR(x) ⑦EG (2)

①?xF(x) 前提引入 ②F(c) ①EI

③?x(F(x)→(G(a)∧R(x))) 前提引入 ④F(c)→(G(a)∧R(c)) ③UI

⑤G(a)∧R(c) ②④假言推理 ⑥R(c) ⑤化简 ⑦F(c)∧R(c) ②⑥合取引入 ⑧?x(F(x)∧R(x)) ⑦EG

第六章部分课后习题参考答案

5.确定下列命题是否为真:

(1)??? 真 (2)?∈? 假 (3)}{??? 真 (4)}{?∈? 真 (5){a,b }?{a,b,c,{a,b,c }} 真 (6){a,b }∈{a,b,c,{a,b }} 真 (7){a,b }?{a,b,{{a,b }}} 真 (8){a,b }∈{a,b,{{a,b }}} 假

6.设a,b,c 各不相同,判断下述等式中哪个等式为真: (1){{a,b },c,?} ={{a,b },c } 假 (2){a ,b,a }={a,b } 真 (3){{a },{b}}={{a,b }} 假 (4){?,{?},a,b }={{?,{?}},a,b } 假 8.求下列集合的幂集:

(1){a,b,c } P(A)={ ?,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}} (2){1,{2,3}} P(A)={ ?, {1}, {{2,3}}, {1,{2,3}} } (3){?} P(A)={ ?, {?} }

(4){?,{?}} P(A)={ ?, {1}, {{2,3}}, {1,{2,3}} }

14.化简下列集合表达式:

(1)(A B) B )-(A B)

(2)((A B C)-(B C)) A

解:

(1)(A B) B )-(A B)=(A B) B ) ~(A B)

=(A B) ~(A B)) B=? B=?

(2)((A B C)-(B C)) A=((A B C) ~(B C)) A

=(A ~(B C)) ((B C ) ~(B C)) A

=(A ~(B C)) ? A=(A ~(B C)) A=A

18.某班有25个学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。已知6个会打网球的人都会打篮球或排球。求不会打球的人数。

解: 阿A={会打篮球的人},B={会打排球的人},C={会打网球的人}

|A|=14, |B|=12, |A B|=6,|A C|=5,| A B C|=2,

|C|=6,C?A B

如图所示。

25-(5+4+2+3)-5-1=25-14-5-1=5

不会打球的人共5人

21.设集合A={{1,2},{2,3},{1,3},{?}},计算下列表达式:

(1) A

(2) A

(3) A

(4) A

解:

(1) A={1,2} {2,3} {1,3} {?}={1,2,3,?}

(2) A={1,2} {2,3} {1,3} {?}=?

(3) A=1 2 3 ?=?

(4) A=?

27、设A,B,C是任意集合,证明

(1)(A-B)-C=A- B?C

(2)(A-B)-C=(A-C)-(B-C)

证明

(1) (A-B)-C=(A ~B) ~C= A ( ~B ~C)= A ~(B?C) =A- B?C

(2) (A-C)-(B-C)=(A ~C) ~(B ~C)= (A ~C) (~B C)

=(A ~C ~B) (A ~C C)= (A ~C ~B) ?

= A ~(B?C) =A- B?C 由(1)得证。

第七章部分课后习题参考答案

7.列出集合A={2,3,4}上的恒等关系I A,全域关系E A,小于或等于关系L A,整除关系D A.

={,,}

解:I

A

={,,,,,,,,}

E

A

={,,,,,}

L

A

={}

D

A

13.设A={,,}

B={,,}

求A?B,A?B, domA, domB, dom(A?B), ranA, ranB, ran(A?B ), fld(A-B).

解:A?B={,,,,}

A?B={}

domA={1,2,3}

domB={1,2,4}

dom(A∨B)={1,2,3,4}

ranA={2,3,4}

ranB={2,3,4}

ran(A?B)={4}

A-B={,},fld(A-B)={1,2,3}

14.设R={,,,,}

求R R, R-1, R↑{0,1,}, R[{1,2}]

解:R R={,,}

R -1,={,,,,,}

R ↑{0,1}={,,,,} R[{1,2}]=ran(R|{1,2})={2,3}

16.设A={a,b,c,d},1R ,2R 为A 上的关系,其中

1

R ={

},,,,,a a a b b d

{}2,,,,,,,R a d b c b d c b

=

求23

122112,,,R R R R R R 。

解: R 1 R 2={,,} R 2 R 1={}

R 12=R 1 R 1={,,} R 22=R 2 R 2={,,} R 23=R 2 R 22={,,}

36.设A={1,2,3,4},在A ?A 上定义二元关系R ,

?,∈A ?A ,〈u,v> R ?u + y = x + v. (1)证明R 是A ?A 上的等价关系. (2)确定由R 引起的对A ?A 的划分. (1)证明:∵R ?u+y=x-y

∴R?u-v=x-y

?∈A ?A ∵u-v=u-v ∴R ∴R 是自反的

任意的,∈A ×A 如果R ,那么u-v=x-y ∴x-y=u-v ∴R ∴R 是对称的

任意的,,∈A ×A

若R,R

则u-v=x-y,x-y=a-b

∴u-v=a-b ∴R

∴R是传递的

∴R是A×A上的等价关系

(2) ∏={{,,,}, {,,}, {,}, {}, {,,}, {,}, {} }

41.设A={1,2,3,4},R为A?A上的二元关系, ?〈a,b〉,〈c,d〉∈A?A ,

〈a,b〉R〈c,d〉?a + b = c + d

(1)证明R为等价关系.

(2)求R导出的划分.

(1)证明:?

a+b=a+b

∴R

∴R是自反的

任意的,∈A×A

设R,则a+b=c+d

∴c+d=a+b ∴R

∴R是对称的

任意的,,∈A×A

若R,R

则a+b=c+d,c+d=x+y

∴a+b=x+y ∴R

∴R是传递的

∴R是 A×A上的等价关系

(2)∏={{}, {,}, {,,}, {,,,}, {,,}, {,}, {}}

43. 对于下列集合与整除关系画出哈斯图:

(1) {1,2,3,4,6,8,12,24}

(2) {1,2,3,4,5,6,7,8,9,10,11,12} 解

:

2

3

468

1

11

(1) (2)

45.下图是两个偏序集的哈斯图.分别写出集合A 和偏序关系R 的集合表达式.

d

g

a

b

f g

(a) (b) 解: (a)A={a,b,c,d,e,f,g}

R ={,,,,,,,,,}A I ?

(b) A={a,b,c,d,e,f,g}

R ={,,,,,,}A I ?

46.分别画出下列各偏序集的哈斯图,并找出A 的极大元`极小元`最大元和最小元.

(1)A={a,b,c,d,e}

R ={,,,,,,}?I A . (2)A={a,b,c,d,e}, R ={}?IA. 解:

a

b d

e

a

b

c

d

e

(1) (2)

项目 (1) (2) 极大元: e a,b,d,e 极小元: a a,b,c,e 最大元: e 无 最小元: a 无

第八章部分课后习题参考答案

1.设f :N →N,且

f (x)=12x x x ??

???

,若为奇数若为偶数,

求f (0), f ({0}), f (1), f ({1}), f ({0,2,4,6,…}),f ({4,6,8}), f -1({3,5,7}). 解:f (0)=0, f ({0})={0}, f (1)=1, f ({1})={1},

f ({0,2,4,6,…})=N ,f ({4,6,8})={2,3,4}, f -1 ({3,5,7})={6,10,14}. 4. 判断下列函数中哪些是满射的?哪些是单射的?哪些是双射的? (1) f:N →N, f(x)=x 2+2 不是满射,不是单射

(2) f:N →N,f(x)=(x)mod 3,x 除以3的余数 不是满射,不是单射

(3) f:N →N,f(x)=10x x ???,若为奇数

,若为偶数 不是满射,不是单射

(4) f:N →{0,1},f(x)=01x x ???,若为奇数

,若为偶数 是满射,不是单射

(5) f:N-{0}→R,f(x)=lgx 不是满射,是单射 (6) f:R →R,f(x)=x 2-2x-15 不是满射,不是单射

5. 设X={a,b,c,d},Y={1,2,3},f={,,,}判断以下命题的真假: (1)f 是从X 到Y 的二元关系,但不是从X 到Y 的函数; 对 (2)f 是从X 到Y 的函数,但不是满射,也不是单射的; 错 (3)f 是从X 到Y 的满射,但不是单射; 错 (4)f 是从X 到Y 的双射. 错

第十章部分课后习题参考答案

4.判断下列集合对所给的二元运算是否封闭: (1) 整数集合Z 和普通的减法运算。

封闭,不满足交换律和结合律,无零元和单位元 (2) 非零整数集合

普通的除法运算。不封闭

(3) 全体n n ?实矩阵集合

(R )和矩阵加法及乘法运算,其中n 2。

封闭 均满足交换律,结合律,乘法对加法满足分配律; 加法单位元是零矩阵,无零元;

乘法单位元是单位矩阵,零元是零矩阵;

(4)全体n n ?实可逆矩阵集合关于矩阵加法及乘法运算,其中n 2。不封闭 (5)正实数集合

和运算,其中运算定义为:

不封闭 因为 +?-=--?=R 1111111 (6)n

关于普通的加法和乘法运算。

封闭,均满足交换律,结合律,乘法对加法满足分配律 加法单位元是0,无零元;

乘法无单位元(1>n ),零元是0;1=n 单位元是1 (7)A = {},,,21n a a a n

运算定义如下:

封闭 不满足交换律,满足结合律, (8)S =

关于普通的加法和乘法运算。

封闭 均满足交换律,结合律,乘法对加法满足分配律 (9)S = {0,1},S 是关于普通的加法和乘法运算。

加法不封闭,乘法封闭;乘法满足交换律,结合律

(10)S = ,S关于普通的加法和乘法运算。

加法不封闭,乘法封闭,乘法满足交换律,结合律

5.对于上题中封闭的二元运算判断是否适合交换律,结合律,分配律。

见上题

7.设* 为+Z上的二元运算+

x,,

y

?Z

X * Y = min ( x,y ),即x和y之中较小的数.

(1)求4 * 6,7 * 3。

4, 3

Z上是否适合交换律,结合律,和幂等律?

(2)* 在+

满足交换律,结合律,和幂等律

(3)求*运算的单位元,零元及+

Z中所有可逆元素的逆元。

单位元无,零元1, 所有元素无逆元

8.Q

=Q为有理数集,*为S上的二元运算,,S有

Q

S?

* =

(1)*运算在S上是否可交换,可结合?是否为幂等的?

不可交换:*= ≠*

可结合:(*)*=*=

*(*)=*=

(*)*=*(*)

不是幂等的

(2)*运算是否有单位元,零元?如果有请指出,并求S中所有可逆元素的逆元。

设是单位元,S ,*= *=

则==,解的=,即为单位。

设是零元,S ,*= *=

则==,无解。即无零元。

S,设是它的逆元*= *=

==

a=1/x,b=-y/x

所以当x ≠0时,x

y x y x -=

>

10.令S={a ,b},S 上有四个运算:*,

分别有表10.8确定。

(a) (b) (c) (d)

(1)这4个运算中哪些运算满足交换律,结合律,幂等律? (a) 交换律,结合律,幂等律都满足, 零元为a,没有单位元; (b)满足交换律和结合律,不满足幂等律,单位元为a,没有零元

b b a a ==--11,

(c)满足交换律,不满足幂等律,不满足结合律 a b a b b a b a a b b a ==== )(,)(

b b a b b a )()(≠ 没有单位元, 没有零元

(d) 不满足交换律,满足结合律和幂等律 没有单位元, 没有零元

(2)求每个运算的单位元,零元以及每一个可逆元素的逆元。 见上

16.设V=〈 N ,+ ,〉,其中+ ,分别代表普通加法与乘法,对下面给定的每个集合确定它是否构成V 的子代数,为什么?

(1)S 1= 是

(2)S 2=

不是 加法不封闭

(3)S 3 = {-1,0,1} 不是,加法不封闭

第十一章部分课后习题参考答案

8.设S={0,1,2,3},

为模4乘法,即

"?x,y ∈S, x

y=(xy)mod 4

问〈S ,〉是否构成群?为什么?

解:(1) ?x,y ∈S, x

y=(xy)mod 4S ∈,

是S 上的代数运算。

(2) ?x,y,z ∈S,设xy=4k+r 30≤≤r

(x

y)

z =((xy)mod 4)

z=r

z=(rz)mod 4

=(4kz+rz)mod 4=((4k+r)z)mod 4 =(xyz)mod 4 同理x

(y

z) =(xyz)mod 4 所以,(x y)

z = x (y

z),结合律成立。

(3) ?x ∈S, (x

1)=(1

x)=x,,所以1是单位元。

(4),33,1111==-- 0和2没有逆元 所以,〈S ,〉不构成群

9.设Z 为整数集合,在Z 上定义二元运算。如下: " ?x,y ∈Z,xoy= x+y-2 问Z 关于o 运算能否构成群?为什么?

解:(1) ?x,y ∈Z, xoy= x+y-2Z ∈,o 是Z 上的代数运算。 (2) ?x,y,z ∈Z,

(xoy) oz =(x+y-2)oz=(x+y-2)+z-2=x+y+z-4 同理(xoy)oz= xo(yoz),结合律成立。

(3)设e 是单位元,?x ∈Z, xo e = e ox=x,即x+e -2= e +x-2=x, e=2 (4) ?x ∈Z , 设x 的逆元是y, xoy= yox=e , 即x+y-2=y+x-2=2, 所以,x y x -==-41 所以〈Z ,o 〉构成群

11.设G=?

??

??????? ??--???? ??-???? ??-???? ??1001,1001,

1001,1001,证明G 关于矩阵乘法构成一个群. 解:(1) ?x,y ∈G, 易知xy ∈G,乘法是Z 上的代数运算。

(2) 矩阵乘法满足结合律

(3)设???

?

??1001是单位元,

离散数学答案屈婉玲版第二版高等教育出版社课后答案

离散数学答案屈婉玲版 第二版高等教育出版社课后答案 第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数1 q: 3是无理数0 r: 2是无理数 1 s: 6能被2整除1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式

(5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ?(?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q)

屈婉玲版离散数学课后习题答案【2】

第四章部分课后习题参考答案 3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值: (1) 对于任意x,均有错误!未找到引用源。2=(x+错误!未找到引用源。)(x 错误!未找到引用源。). (2) 存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合. 解: F(x): 错误!未找到引用源。2=(x+错误!未找到引用源。)(x 错误!未找到引用源。). G(x): x+5=9. (1)在两个个体域中都解释为)(x xF ?,在(a )中为假命题,在(b)中为真命题。 (2)在两个个体域中都解释为)(x xG ?,在(a )(b)中均为真命题。 4. 在一阶逻辑中将下列命题符号化: (1) 没有不能表示成分数的有理数. (2) 在北京卖菜的人不全是外地人. 解: (1)F(x): x 能表示成分数 H(x): x 是有理数 命题符号化为: ))()((x H x F x ∧??? (2)F(x): x 是北京卖菜的人 H(x): x 是外地人 命题符号化为: ))()((x H x F x →?? 5. 在一阶逻辑将下列命题符号化: (1) 火车都比轮船快. (3) 不存在比所有火车都快的汽车. 解: (1)F(x): x 是火车; G(x): x 是轮船; H(x,y): x 比y 快

命题符号化为: )) F x G x→ ∧ ? ? y y ( )) ( ) , x ((y ( H (2) (1)F(x): x是火车; G(x): x是汽车; H(x,y): x比y快 命题符号化为: ))) x x F y y→ ?? ∧ ? G (y H ( , ( ) ( ( x ) 9.给定解释I如下: (a) 个体域D为实数集合R. (b) D中特定元素错误!未找到引用源。=0. (c) 特定函数错误!未找到引用源。(x,y)=x错误!未找到引用源。y,x,y D ∈错误!未找到引用源。. (d) 特定谓词错误!未找到引用源。(x,y):x=y,错误!未找到引用源。(x,y):x离散数学课后习题答案

习题参考解答 习题 1、(3)P:银行利率降低 Q:股价没有上升 P∧Q (5)P:他今天乘火车去了北京 Q:他随旅行团去了九寨沟 Q P? (7)P:不识庐山真面目 Q:身在此山中 Q→P,或~P→~Q (9)P:一个整数能被6整除 Q:一个整数能被3整除 R:一个整数能被2整除 T:一个整数的各位数字之和能被3整除 P→Q∧R ,Q→T 2、(1)T (2)F (3)F (4)T (5)F (6)T (7)F (8)悖论 习题 1(3) ) ( ) ( ) ( ) ( ) ( ) ( R P Q P R P Q P R Q P R Q P → ∨ → ? ∨ ? ∨ ∨ ? ? ∨ ∨ ? ? ∨ →

(4) ()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右 2、不, 不, 能 习题 1(3) (())~((~)) (~)()~(~(~))(~~)(~) P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、 主合取范式 ) ()()()()()()()()()()()()()())(())(()()(()) ()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧?∧∨?∧?∧∨∧?∧?∨?∧∧?∨?∧?∧?=∧∧∨?∧∧∨∧?∧∨?∧?∧∨∧?∧?∨∧?∧?∨?∧∧?∨?∧?∧?=∨?∧∧∨∨?∧?∧∨∨?∧∨?∧?=∧∨?∧∨?=∨?∧∨?=→∧→ ————主析取范式 (2) ()()(~)(~) (~(~))(~(~))(~~)(~)(~~) P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨Q 2、 ()~() (~)(~) (~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价 3、解:根据给定的条件有下述命题公式: (A →(CD ))∧~(B ∧C )∧~(C ∧D ) (~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D ) ((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨ (~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )

屈婉玲版离散数学课后习题答案【1】

第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式//最后一列全为1 (5)公式类型为可满足式(方法如上例)//最后一列至少有一个1 (6)公式类型为永真式(方法如上例)// 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.

(1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p) (2)?(p→q)∧q∧r (3)(p∨(q∧r))→(p∨q∨r) 解: (1)主析取范式 (?p→q)→(?q∨p)

离散数学课后习题答案(左孝凌版)

离散数学课后习题答案(左孝凌版) 1-1,1-2解: a)是命题,真值为T。 b)不是命题。 c)是命题,真值要根据具体情况确定。 d)不是命题。 e)是命题,真值为T。 f)是命题,真值为T。 g)是命题,真值为F。 h)不是命题。 i)不是命题。 (2)解: 原子命题:我爱北京天安门。 复合命题:如果不是练健美操,我就出外旅游拉。 (3)解: a)(┓P ∧R)→Q b)Q→R c)┓P d)P→┓Q (4)解: a)设Q:我将去参加舞会。R:我有时间。P:天下雨。 Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。 c) 设Q:一个数是奇数。R:一个数不能被2除。 (Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解: a)设P:王强身体很好。Q:王强成绩很好。P∧Q b)设P:小李看书。Q:小李听音乐。P∧Q c)设P:气候很好。Q:气候很热。P∨Q d)设P: a和b是偶数。Q:a+b是偶数。P→Q e)设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。P Q f)设P:语法错误。Q:程序错误。R:停机。(P∨ Q)→ R (6) 解: a)P:天气炎热。Q:正在下雨。 P∧Q b)P:天气炎热。R:湿度较低。 P∧R c)R:天正在下雨。S:湿度很高。 R∨S d)A:刘英上山。B:李进上山。 A∧B e)M:老王是革新者。N:小李是革新者。 M∨N f)L:你看电影。M:我看电影。┓L→┓M g)P:我不看电视。Q:我不外出。 R:我在睡觉。 P∧Q∧R h)P:控制台打字机作输入设备。Q:控制台打字机作输出设备。P∧Q 1-3 (1)解:

离散数学第四版课后标准答案

离散数学第四版课后答案 第1章习题解答 1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9), (10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。 分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。 本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。 其次,4)这个句子是陈述句,但它表示的判断结果是不确定。又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。这里的“且”为“合取”联结词。在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。但要注意,有时“和”或“与” 联结的是主语,构成简单命题。例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。 1.2 (1)p: 2是无理数,p为真命题。 (2)p:5能被2整除,p为假命题。 (6)p→q。其中,p:2是素数,q:三角形有三条边。由于p与q都是真 命题,因而p→q为假命题。 (7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。由于p为假命

题,q为真命题,因而p→q为假命题。 (8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不 知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。(9)p:太阳系外的星球上的生物。它的真值情况而定,是确定的。 1 (10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。 (12)p∨q,其中,p:4是偶数,q:4是奇数。由于q是假命题,所以,q 为假命题,p∨q为真命题。 (13)p∨q,其中,p:4是偶数,q:4是奇数,由于q是假命题,所以,p∨q 为假命题。 (14)p:李明与王华是同学,真值由具体情况而定(是确定的)。 (15)p:蓝色和黄色可以调配成绿色。这是真命题。 分析命题的真值是唯一确定的,有些命题的真值我们立即可知,有些则不能马上知道,但它们的真值不会变化,是客观存在的。 1.3 令p:2+2=4,q:3+3=6,则以下命题分别符号化为 (1)p→q (2)p→?q (3)?p→q (4)?p→?q

离散数学最全课后答案(屈婉玲版)

1.1.略 1.2.略 1.3.略 1.4.略 1.5.略 1.6.略 1.7.略 1.8.略 1.9.略 1.10.略 1.11.略 1.12.将下列, 并给出各命题的: (1)2+2=4 当且仅 当3+3=6. (2)2+2=4 的充要 条件是3+3 6. (3)2+2 4 与3+3 =6 互为充要条件. (4)若2+24, 则 3+36, 反之亦然. (1)p q, 其中, p: 2+2=4, q: 3+3=6, 真值为1. (2)p q,

其中, p: 2+2=4, q: 3+3=6, 真值为0. (3) p q, 其中, p: 2+2=4, q: 3+3=6, 真值为0. (4) p q, 其中, p: 2+2=4, q: 3+3=6, 真值为1. 1.13.将下列命题符号化, 并给出各命题的真值:(1)若今天是星期一, 则明天是星期二. (2)只有今天是星期一, 明天才是星期二. (3)今天是星期一当且仅当明天是星期二. (4)若今天是星期一, 则明天是星期三. 令p: 今天是星期一; q: 明天是星期二; r: 明天是星期三. (1) p q 1. (2) q p 1. (3) p q 1.

(4) p r 当p 0 时为真; p 1 时为假. 1.14.将下 列 . (1) 刘 晓月跑得快, 跳得高. (2) 老王是山东 人或河北人. (3)因为天气冷, 所以我穿了羽 绒服. (4)王欢与李乐组成一个 小组. (5)李辛与李末是兄弟. (6)王强与刘威都学 过法语. (7)他一面 吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他 迟到了. (12)2 与4 都是素数, 这是不对的. (13)“2或4 是素数, 这是不对的”是不对的.

离散数学习题详细答案

离散数学习题详细答案

————————————————————————————————作者:————————————————————————————————日期:

离散数学习题答案 习题一及答案:(P14-15) 14、将下列命题符号化: (5)李辛与李末是兄弟 解:设p :李辛与李末是兄弟,则命题符号化的结果是p (6)王强与刘威都学过法语 解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是 p q ∧ (9)只有天下大雨,他才乘班车上班 解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p → (11)下雪路滑,他迟到了 解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→ 15、设p :2+3=5. q :大熊猫产在中国. r :太阳从西方升起. 求下列复合命题的真值: (4)()(())p q r p q r ∧∧???∨?→ 解:p=1,q=1,r=0, ()(110)1p q r ∧∧??∧∧??, (())((11)0)(00)1p q r ?∨?→??∨?→?→? ()(())111p q r p q r ∴∧∧???∨?→??? 19、用真值表判断下列公式的类型: (2)()p p q →?→? 解:列出公式的真值表,如下所示: p q p ? q ? ()p p →? ()p p q →?→? 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。 20、求下列公式的成真赋值:

离散数学课后答案

离散数学课后答案 习题一 6.将下列命题符号化。 (1)小丽只能从框里那一个苹果或一个梨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课. 答: (1)(p Λ?q )ν(?pΛq)其中p:小丽拿一个苹果,q:小丽拿一个梨(2)(p Λ?q )ν(?pΛq)其中p:刘晓月选学英语,q:刘晓月选学日语 14.将下列命题符号化. (1) 刘晓月跑得快, 跳得高. (2)老王是山东人或河北人. (3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小组. (5)李辛与李末是兄弟. (6)王强与刘威都学过法语. (7)他一面吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他迟到了. (12)2与4都是素数, 这是不对的. (13)“2或4是素数, 这是不对的”是不对的. 答: (1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高. (2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人. (3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服. (4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题. (5)p, 其中, p: 李辛与李末是兄弟. (6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语. (7)p∧q, 其中, p: 他吃饭, q: 他听音乐. (8)p→q, 其中, p: 天下大雨, q: 他乘班车上班. (9)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (10)p→q, 其中, p: 他乘班车上班, q: 天下大雨. (11)p→q, 其中, p: 下雪路滑, q: 他迟到了. (12) ? (p∧q)或?p∨?q, 其中, p: 2是素数, q: 4是素数. (13) ? ? (p∨q)或p∨q, 其中, p: 2是素数, q: 4是素数. 16. 19.用真值表判断下列公式的类型: (1)p→ (p∨q∨r) (2)(p→?q) →?q

离散数学第二版邓辉文编著第一章第二节习题答案

离散数学第二版邓辉文编著第一章第二节习题答案 1.2 映射的有关概念 习题1.2 1. 分别计算?1. 5?,?-1?,?-1. 5?,? 1. 5?,?-1?,?-1. 5?. 解?1. 5?=2,?-1?=-1,?-1. 5?=-1,?1. 5?=1,?-1?=-1,?-1. 5?=-2. 2. 下列映射中,那些是双射? 说明理由. (1)f :Z →Z , f (x ) =3x . (2)f :Z →N , f (x ) =|x |+1. (3)f :R →R , f (x ) =x 3+1. (4)f :N ?N →N , f (x 1, x 2) =x 1+x 2+1. (5)f :N →N ?N , f (x ) =(x , x +1). 解 (1)对于任意对x 1, x 2∈Z ,若f (x 1) =f (x 2) ,则3x 1=3x 2,于是x 1=x 2,所以f 是单射. 由于对任意x ∈Z ,f (x ) ≠2∈Z ,因此f 不是满射,进而f 不是双射. (2)由于2, -2∈Z 且f (2) =f (-2) =3,因此f 不是单射. 又由于0∈N ,而任意x ∈Z 均有f (x ) =|x |+1≠0,于是f 不是满射. 显然,f 不是双射. (3)对于任意对x 1, x 2∈R ,若f (x 1) =f (x 2) ,则x 1+1=x 2+1,于是x 1=x 2,所以f 是单射. 对于任意y ∈R ,取x =(y -1) ,这时 1??3f (x ) =x +1=?(y -1) 3?+1=(y -1) +1=y , ??33313 所以f 是满射. 进而f 是双射.

离散数学课后习题答案二

习题3.7 1. 列出关系}6|{=???∈>离散数学课后习题答案

1-1,1-2 (1)解: a)是命题,真值为T。 b)不是命题。 c)是命题,真值要根据具体情况确定。 d)不是命题。 e)是命题,真值为T。 f)是命题,真值为T。 g)是命题,真值为F。 h)不是命题。 i)不是命题。 (2)解: 原子命题:我爱北京天安门。 复合命题:如果不是练健美操,我就出外旅游拉。 (3)解: a)(┓P ∧R)→Q b)Q→R c)┓P d)P→┓Q (4)解: a)设Q:我将去参加舞会。R:我有时间。P:天下雨。 Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。 R∧Q:我在看电视边吃苹果。 c) 设Q:一个数是奇数。R:一个数不能被2除。 (Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解:

a)设P:王强身体很好。Q:王强成绩很好。P ∧Q b)设P:小李看书。Q:小李听音乐。P∧Q c)设P:气候很好。Q:气候很热。P∨Q d)设P: a和b是偶数。Q:a+b是偶数。P →Q e)设P:四边形ABCD是平行四边形。Q :四 边形ABCD的对边平行。P Q f)设P:语法错误。Q:程序错误。R:停机。 (P∨ Q)→ R (6) 解: a)P:天气炎热。Q:正在下雨。 P∧Q b)P:天气炎热。R:湿度较低。 P∧R c)R:天正在下雨。S:湿度很高。 R∨S d)A:刘英上山。B:李进上山。 A∧B e)M:老王是革新者。N:小李是革新者。 M∨ N f)L:你看电影。M:我看电影。┓L→┓M g)P:我不看电视。Q:我不外出。 R:我在睡觉。 P∧Q∧R h)P:控制台打字机作输入设备。Q:控制台打 字机作输出设备。P∧Q 1-3 (1)解: a)不是合式公式,没有规定运算符次序(若 规定运算符次序后亦可作为合式公式) b)是合式公式 c)不是合式公式(括弧不配对) d)不是合式公式(R和S之间缺少联结词) e)是合式公式。 (2)解:

离散数学课后习题答案_(左孝凌版)

习题 1-5 (1)证明: a)(P∧(P→Q))→Q (P∧(┐P∨Q))→Q (P∧┐P)∨(P∧Q)→Q (P∧Q)→Q ┐(P∧Q)∨Q ┐P∨┐Q∨Q ┐P∨T T b)┐P→(P→Q) P∨(┐P∨Q) (P∨┐P)∨Q T∨Q T c)((P→Q)∧(Q→R))→(P→R) 因为(P→Q)∧(Q→R)(P→R) 所以(P→Q)∧(Q→R)为重言式。 d)((a∧b)∨(b∧c) ∨(c∧a))(a∨b)∧(b∨c)∧(c∨a) 因为((a∧b)∨(b∧c)∨(c∧a)) ((a∨c)∧b)∨(c∧a) ((a∨c)∨(c∧a))∧(b∨(c∧a)) (a∨c)∧(b∨c)∧(b∨a) 所以((a∧b)∨(b∧c) ∨(c∧a))(a∨b)∧(b∨c)∧(c∨a)为重言式。 (2)证明: a)(P→Q)P→(P∧Q) 解法1: 设P→Q为T (1)若P为T,则Q为T,所以P∧Q为T,故P→(P∧Q)为T (2)若P为F,则Q为F,所以P∧Q为F,P→(P∧Q)为T 命题得证 解法2: 设P→(P∧Q)为F ,则P为T,(P∧Q)为F ,故必有P为T,Q为F ,所以P→Q为F。 解法3: (P→Q) →(P→(P∧Q)) ┐(┐P∨Q)∨(┐P∨(P∧Q)) ┐(┐P∨Q)∨((┐P∨P)∧(┐P∨Q)) T 所以(P→Q)P→(P∧Q) b)(P→Q)→Q P∨Q

设P∨Q为F,则P为F,且Q为F, 故P→Q为T,(P→Q)→Q为F, 所以(P→Q)→Q P∨Q。 c)(Q→(P∧┐P))→(R→(R→(P∧┐P)))R→Q 设R→Q为F,则R为T,且Q为F,又P∧┐P为F 所以Q→(P∧┐P)为T,R→(P∧┐P)为F 所以R→(R→(P∧┐P))为F,所以(Q→(P∧┐P))→(R→(R→(P∧┐P)))为F 即(Q→(P∧┐P))→(R→(R→(P∧┐P)))R→Q成立。 (3)解: a) P→Q表示命题“如果8是偶数,那么糖果是甜的”。 b)a)的逆换式Q→P表示命题“如果糖果是甜的,那么8是偶数”。 c)a)的反换式┐P→┐Q表示命题“如果8不是偶数,那么糖果不是甜的”。 d)a)的逆反式┐Q→┐P表示命题“如果糖果不是甜的,那么8不是偶数”。(4)解: a)如果天下雨,我不去。 设P:天下雨。Q:我不去。P→Q 逆换式Q→P表示命题:如果我不去,则天下雨。 逆反式┐Q→┐P表示命题:如果我去,则天不下雨 b)仅当你走我将留下。 设S:你走了。R:我将留下。R→S 逆换式S→R表示命题:如果你走了则我将留下。 逆反式┐S→┐R表示命题:如果你不走,则我不留下。 c)如果我不能获得更多帮助,我不能完成个任务。 设E:我不能获得更多帮助。H:我不能完成这个任务。E→H 逆换式H→E表示命题:我不能完成这个任务,则我不能获得更多帮助。 逆反式┐H→┐E表示命题:我完成这个任务,则我能获得更多帮助(5)试证明P Q,Q逻辑蕴含P。 证明:解法1: 本题要求证明(P Q) ∧Q P, 设(P Q) ∧Q为T,则(P Q)为T,Q为T ,故由的定义,必有P为T。 所以(P Q) ∧Q P 解法2: 由体题可知,即证((P Q)∧Q)→P是永真式。 ((P Q)∧Q)→P (((P∧Q) ∨(┐P∧┐Q)) ∧Q)→P (┐((P∧Q) ∨(┐P∧┐Q)) ∨┐Q) ∨P (((┐P∨┐Q) ∧(P∨Q)) ∨┐Q) ∨P ((┐Q∨┐P∨┐Q) ∧(┐Q∨P∨Q)) ∨P ((┐Q∨┐P) ∧T) ∨P ┐Q∨┐P∨P

离散数学第二版邓辉文编著第一章第二节习题答案

1.2 映射的有关概念 习题1.2 1. 分别计算??5.1,??1-,??5.1-,??5.1,??1-,??5.1-. 解 ??25.1=,??11-=-,??15.1-=-,??15.1=,??11-=-,??25.1-=-. 2.下列映射中,那些是双射? 说明理由. (1).3)(,Z Z :x x f f =→ (2).1||)(,N Z :+=→x x f f (3).1)(,R R :3+=→x x f f (4).1),(,N N N :2121++=→?x x x x f f (5)).1,()(,N N N :+=?→x x x f f 解 (1)对于任意对∈21,x x Z ,若)()(21x f x f =,则2133x x =,于是21x x =,所以f 是单射. 由于对任意∈x Z ,∈≠2)(x f Z ,因此f 不是满射,进而f 不是双射. (2)由于∈-2,2Z 且3)2()2(=-=f f ,因此f 不是单射. 又由于∈0N ,而任意∈x Z 均有01||)(≠+=x x f ,于是f 不是满射. 显然,f 不是双射. (3)对于任意对∈21,x x R ,若)()(21x f x f =,则113231+=+x x ,于是21x x =,所以f 是单射. 对于任意∈y R ,取3 1)1(-=y x ,这时 y y y x x f =+-=+??????-=+=1)1(1)1(1)(3313, 所以f 是满射. 进而f 是双射. (4)由于∈)1,2(),2,1(N ?N 且)1,2()2,1(≠,而4)1,2()2,1(==f f ,因此f 不是单射. 又由于∈0N ,而任意∈),(21x x N ?N 均有01),(2121≠++=x x x x f ,于是f 不是满射. 显然,f 就不是双射. (5)由于∈21,x x N ,若)()(21x f x f =,则)1,()1,(2211+=+x x x x ,于是21x x =,因此f 是单射. 又由于∈)0,0(N ?N ,而任意∈x N 均有)0,0()1,()(≠+=x x x f ,于是f 不是满射. 因为f 不是满射,所以f 不是双射.

离散数学 数理逻辑 课后答案

第一章命题逻辑基本概念 4.将下列命题符号化,并指出真值: (1)p∧q,其中,p:2是素数,q:5是素数,真值为1; (2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1; (3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1; (4)p∧q,其中,p:3是素数,q:3是偶数,真值为0; (5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0. 5.将下列命题符号化,并指出真值: (1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1; (2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1; (3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; (4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1; (5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; 6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨; (2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;. 7.因为p与q不能同时为真. 8.p:2

离散数学第二版 屈婉玲 1-5章(答案)

《离散数学1-5章》练习题答案第2,3章(数理逻辑) 1.答:(2),(3),(4) 2.答:(2),(3),(4),(5),(6) 3.答:(1)是,T (2)是,F (3)不是 (4)是,T (5)不是(6)不是 4.答:(4) 5.答:?P ,Q→P 6.答:P(x)∨?yR(y) 7.答:??x(R(x)→Q(x)) 8、 c、P→(P∧(Q→P)) 解:P→(P∧(Q→P)) ??P∨(P∧(?Q∨P)) ??P∨P ? 1 (主合取范式) ? m0∨ m1∨m2∨ m3 (主析取范式) d、P∨(?P→(Q∨(?Q→R))) 解:P∨(?P→(Q∨(?Q→R))) ? P∨(P∨(Q∨(Q∨R))) ? P∨Q∨R ? M0 (主合取范式) ? m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式) 9、

b、P→(Q→R),R→(Q→S) => P→(Q→S) 证明: (1) P 附加前提 (2) Q 附加前提 (3) P→(Q→R) 前提 (4) Q→R (1),(3)假言推理 (5) R (2),(4)假言推理 (6) R→(Q→S) 前提 (7) Q→S (5),(6)假言推理 (8) S (2),(7)假言推理 d、P→?Q,Q∨?R,R∧?S??P 证明、 (1) P 附加前提 (2) P→?Q 前提 (3)?Q (1),(2)假言推理 (4) Q∨?R 前提 (5) ?R (3),(4)析取三段论 (6 ) R∧?S 前提 (7) R (6)化简 (8) R∧?R 矛盾(5),(7)合取 所以该推理正确 10.写出?x(F(x)→G(x))→(?xF(x) →?xG(x))的前束范式。 解:原式??x(?F(x)∨G(x))→(?(?x)F(x) ∨ (?x)G(x)) ??(?x)(?F(x)∨G(x)) ∨(?(?x)F(x) ∨ (?x)G(x)) ? (?x)((F(x)∧? G(x)) ∨G(x)) ∨ (?x) ?F(x)

离散数学(第二版)课后习题答案详解(完整版)

习题一 1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道? (1)中国有四大发明. 答:此命题是简单命题,其真值为 1. (2)5 是无理数. 答:此命题是简单命题,其真值为 1. (3)3 是素数或 4 是素数. 答:是命题,但不是简单命题,其真值为1. (4)2x+

(2)25 不是无理数. 答:否定式:25 是有理数. p:25 不是无理数. q:25 是有理数. 其否定式q 的 真值为1. (3)2.5 是自然数. 答:否定式:2.5 不是自然数. p:2.5 是自然数. q:2.5 不是自然数. 其否定式q 的真值为1. (4)ln1 是整数. 答:否定式:ln1 不是整数. p:ln1 是整数. q:ln1 不是整数. 其否定式q 的真值为1. 4.将下列命题符号化,并指出真值. (1)2 与5 都是素数 答:p:2 是素数,q:5 是素数,符号化为p q∧ ,其真值为 1. (2)不但π是无理数,而且自然对数的底e 也是无理数. 答:p:π 是无理数,q:自然对数的底e 是无理数,符号化为p q∧ ,其真值为1. (3)虽然2 是最小的素数,但2 不是最小的自然数. 答:p:2 是最小的素数,q:2 是最小的自然数,符号化为p q∧? ,其真值为1. (4)3 是偶素数. 答:p:3 是素数,q:3 是偶数,符号化为p q∧ ,其真值为0. (5)4 既不是素数,也不是偶数. 答:p:4 是素数,q:4 是偶数,符号化为? ∧?p q,其真值为0. 5.将下列命题符号化,并指出真值. (1)2 或3 是偶数. (2)2 或4 是偶数. (3)3 或5 是偶数. (4)3 不是偶数或4 不是偶数. (5)3 不是素数或4 不是偶数. 答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数 (1)符号化: p q∨ ,其真值为1. (2)符号化:p r∨ ,其真值为1. (3)符号化:r t∨ ,其真值为0. (4)符号化:? ∨?q s,其真值为1. (5)符号化:? ∨?r s,其真值为0. 6.将下列命题符号化. (1)小丽只能从筐里拿一个苹果或一个梨. 答:p:小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨,符号化为: p q∨ . (2)这学期,刘晓月只能选学英语或日语中的一门外语课.

离散数学最全最新答案 屈婉玲

第一章 命题逻辑基本概念 课后练习题答案 4.将下列命题符号化,并指出真值: (1)p∧q,其中,p:2是素数,q:5是素数,真值为1; (2)p∧q,其中,p:是无理数,q:自然对数的底e 是无理数,真值为1; (3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1; (4)p∧q,其中,p:3是素数,q:3是偶数,真值为0; (5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0. 5.将下列命题符号化,并指出真值: (1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1; (2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1; (3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; (4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1; (5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0; 6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨; (2)(p∧┐q)∨(┐p∧q),其中,p :刘晓月选学英语,q :刘晓月选学日语;. 7.因为p 与q 不能同时为真. 13.设p:今天是星期一,q:明天是星期二,r:明天是星期三: (1)p→q,真值为1(不会出现前件为真,后件为假的情况); (2)q→p,真值为1(也不会出现前件为真,后件为假的情况); (3)p q ,真值为1; (4)p→r,若p 为真,则p→r 真值为0,否则,p→r 真值为1. 16 设p 、q 的真值为0;r 、s 的真值为1,求下列各命题公式的真值。 (1)p ∨(q ∧r)? 0∨(0∧1) ? (2)(p ?r )∧(﹁q ∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p ∧?q ∧r )?(p ∧q ∧﹁r) ?(1∧1∧1) ? (0∧0∧0)?0 (4)(?r ∧s )→(p ∧?q) ?(0∧1)→(1∧0) ?0→0? 1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数 r: 2是无理数 1 s: 6能被2整除 1 t: 6能被4整除 0 命题符号化为: p ∧(q →r)∧(t →s)的真值为1,所以这一段的论述为真。 19.用真值表判断下列公式的类型: (4)(p →q) →(?q →?p) (5)(p ∧r) ?(?p ∧?q) (6)((p →q) ∧(q →r)) →(p →r) 答: (4) p q p →q ?q ?p ?q →?p (p →q)→(?q →?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 //最后一列全为1 (5)公式类型为可满足式(方法如上例)//最后一列至少有一个1 (6)公式类型为永真式(方法如上例)// 返回 第二章 命题逻辑等值演算 本章自测答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) ?(p ∧q →q) (2)(p →(p ∨q))∨(p →r) (3)(p ∨q)→(p ∧r) 答:(2)(p →(p ∨q))∨(p →r)?(?p ∨(p ∨q))∨(?p ∨r)??p ∨p ∨q ∨r ?1 所以公式类型为永真式 (3) P q r p ∨q p ∧r (p ∨q )→(p ∧r) 0 0 0 0 0 1 0 0 1 0 0 1



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3