肿瘤细胞膜/质蛋白转位入核研究进展

您所在的位置:网站首页 磷酸化fak 肿瘤细胞膜/质蛋白转位入核研究进展

肿瘤细胞膜/质蛋白转位入核研究进展

2024-07-15 06:04| 来源: 网络整理| 查看: 265

Zhejiang Da Xue Xue Bao Yi Xue Ban. 2019 Jun 25; 48(3): 318–325. Chinese. doi: 10.3785/j.issn.1008-9292.2019.06.13PMCID: PMC8800772PMID: 31496165

Language: Chinese | English

肿瘤细胞膜/质蛋白转位入核研究进展Nucleus translocation of membrane/cytoplasm proteins in tumor cellsZiling ZHU, Jing TAN, and Hong DENG*Ziling ZHU

浙江大学医学院病理与病理生理学系 浙江省蛋白质组学重点实验室, 浙江 杭州 310058

Find articles by Ziling ZHUJing TAN

浙江大学医学院病理与病理生理学系 浙江省蛋白质组学重点实验室, 浙江 杭州 310058

Find articles by Jing TANHong DENG

浙江大学医学院病理与病理生理学系 浙江省蛋白质组学重点实验室, 浙江 杭州 310058

Find articles by Hong DENGAuthor information Article notes Copyright and License information PMC Disclaimer 浙江大学医学院病理与病理生理学系 浙江省蛋白质组学重点实验室, 浙江 杭州 310058 邓红(1964-), 女, 博士, 副教授, 硕士生导师, 主要从事肿瘤分子病理学研究; E-mail: nc.ude.ujz@gnedgnoh; https://orcid.org/0000-0002-6815-9144 moc.621@uhz_gniliz https://orcid.org/0000-0002-3847-3562第一作者:朱紫菱(1993-), 女, 硕士, 主要从事肿瘤分子病理学研究; E-mail: ; Received 2018 Dec 3; Accepted 2019 May 30.Copyright 版权所有©《浙江大学学报(医学版)》编辑部2019Copyright ©2019 Journal of Zhejiang University(Medical Sciences). All rights reserved.Abstract

蛋白质作为生命物质的基础,在不同组织细胞中呈现不同的定位,执行不同的功能。同种蛋白质在不同的亚细胞区域定位可以发挥不同的功能,甚至表现出截然相反的作用。功能蛋白和结构蛋白都能够发生定位的改变,直接或间接参与信号转导。细胞癌变后,信号异常转导,原本在正常细胞的细胞膜/细胞质中表达的蛋白,却在肿瘤细胞中转位到细胞核而发生功能改变。结构蛋白入核主要通过蛋白断裂、蛋白含量改变以及蛋白相互结合实现。对关键蛋白分子的转位研究,有助于在临床应用中发现新的诊断标志物和治疗靶点。

Abstract

Proteins are the physical basis of life and perform all kinds of life activities. Proteins have different orientations and function in different tissues. The same protein, located in different subcellular regions, can perform different and even opposite functions. Both functional and structural proteins are capable of undergoing re-localization which can directly or indirectly participate in signal transduction. Due to abnormal transduction of signals during carcinogenesis, the proteins originally expressed in the cytoplasm are translocated into the nucleus and lead to functional changes in the tumor tissue. The changes of protein localization are affected by many factors, including the interaction between proteins, expression level of proteins and the cleaved intracellular domain of transmembrane protein.

Keywords: Neoplasms/physiopathology, Proteins/metabolism, Signal transduction, Tumor cells, Review

全球最新癌症发病率和病死率统计结果显示,2018年全球癌症发病率为20%,约1810万新发癌症病例,死亡人数达960万 [ 1] 。尽管有很多医疗途径可以降低癌症的病死率,但是癌症治疗依然任重道远。从18世纪Antoine Fourcroy等发现蛋白质开始,蛋白质研究在19世纪进入高速发展时期。蛋白质作为生命体不可缺少的物质基础,通过在细胞中的差异表达发挥不同的功能,参与几乎所有的生命活动。1999年度诺贝尔生理学或医学奖获得者Gunter Blobel发现蛋白质通过其内在信号实现在细胞中的传递与定位,此后的研究也证实蛋白质可通过外界信号的刺激发生定位改变。

肿瘤细胞某些蛋白的表达不仅存在量的变化——高表达或低表达,也会有亚细胞定位的改变——转位表达。蛋白转位是指在理化信号刺激下,蛋白定位发生改变。蛋白转位通常伴随功能的改变并导致细胞信号转导。细胞信号转导能够介导细胞与细胞以及细胞与微环境之间的信息交流与相互作用,是维持生命活动的必要条件。功能蛋白和结构蛋白都能够发生定位的改变,直接或间接参与信号转导。功能蛋白主要完成各种代谢活动,是信号转导过程的主力军,包括位于细胞表面与信号分子结合的受体以及细胞内将信号转导至细胞各个部位的信号蛋白。越来越多研究者发现,除了功能蛋白发生转位外,维护细胞形态的结构蛋白在某些特殊情况下也会“不安于室”,发生定位改变,参与细胞信号转导。这些蛋白定位异常会直接促使肿瘤、糖尿病、心血管疾病等疾病发生,促进疾病进展。本文以正常细胞中蛋白表达定位为参照,对肿瘤细胞中蛋白核-浆转位作一综述。

1 发生蛋白转位的功能蛋白1.1 受体

受体是接受化学信号的细胞膜蛋白以及细胞内蛋白,包括膜受体和核受体。

膜受体除了能够在细胞膜表面接受外界信号,刺激细胞内通路的激活,也可以通过内化作用聚集在细胞核周围或者直接入核,以便更有效地调控基因转录。Godbole等 [ 2] 发现G蛋白偶联受体通过内化作用进入细胞,在运输过程中发出信号,从而在cAMP/PKA信号通路中发挥更加积极的作用。受体除了通过正常的内化作用进入细胞,也会在化学信号刺激下进入细胞。羊毛硫氨酸合成酶C样蛋白2通常定位在细胞膜上,是脱落酸的受体。该蛋白经脱落酸诱导后在细胞核中富集 [ 3] ,参与活化腺苷酸环化酶通路,下调结肠炎的基因表达,是结肠癌前病变炎症反应的潜在抗炎药物 [ 4] 。

核受体是一类位于细胞核或通过与相应配体结合进入细胞核的蛋白质超家族。核受体在细胞核中通过与DNA元件结合或与转录因子相互作用调控靶基因的表达,而在细胞质或细胞膜上发挥其非核受体的主要功能。如维生素D受体在细胞核内与维生素D结合发挥抗肿瘤作用。而当该受体转位到细胞膜上,则与配体维生素D一起参与钙离子的调控,促进胰腺细胞分泌胰岛素或是促进成骨细胞生长 [ 5] 。

1.2 信号蛋白

信号蛋白是一类在细胞质内不断“移动”的蛋白,是信号通路之间建立联系、靶细胞发挥生物学功能的重要“支架”。信号蛋白往往能够将上游的信息级联放大并传递,引起细胞下游的生物学效应,如果错误地传递了信息,不仅使得相应的生物学效应不发生,甚至产生相反的效果。信号蛋白包括转录因子蛋白激酶以及蛋白磷酸酶。蛋白磷酸酶与蛋白激酶对应存在,以便信号通路失活。

1.2.1 转录因子

转录因子是保证目的基因在特定时间特定强度表达的关键蛋白,能够入核激活相应的信号通路,参与调控基因转录。不过转录因子在细胞质和细胞核中发挥生物学功能的机制常常是不一致的。NF-κB家族的p53在细胞质中通过转录非依赖性作用,结合Bcl-2相关的X蛋白,激活凋亡效应蛋白引起细胞凋亡,杀死肿瘤细胞 [ 6] ,而其在细胞核中则通过p53自身转录活性引起细胞凋亡 [ 7- 8] 。

转录抑制因子则正好相反。当细胞受到外界刺激,稳态发生改变,尤其是细胞癌变情况下,转录抑制因子无法发挥其抑制作用,其相应的信号通路得以顺利激活,如B细胞淋巴瘤因子3(Bcl3)。Bcl3是NF-κB信号通路抑制因子家族的一员,它对NF-κB信号通路的调控也取决于其在细胞中的定位。NF-κB抑制蛋白与转录因子p50结合,阻止p50入核,抑制p50激活NF-κB信号通路。Bcl3在正常情况下,如在早幼红细胞 [ 9] 以及正常皮肤表皮细胞 [ 10] 中也发挥了相同的功能,使得NF-κB信号通路处于失活状态。但在肿瘤组织中Bcl3转位到细胞核中,一方面,其能够与细胞质的p50结合,使得p50从细胞质被Bcl3转位带入到细胞核 [ 11- 12] ,最终激活NF-κB信号通路;另一方面,Bcl3入核使得细胞质中p50游离出来,并在细胞质中泛素化,被蛋白酶体降解,促进NF-κB信号通路下游靶基因的表达。细胞癌变后,异常信号刺激诱导入核的Bcl3返回细胞质中,维持p50在细胞质中的稳定性,抑制激活的NF-κB信号通路。已有研究发现,TNF-α和IL-1可促进Bcl3在肝癌细胞的细胞质中表达,进而抑制已激活的NF-κB信号通路 [ 13] 。

1.2.2 蛋白激酶

蛋白激酶可以作用于特定的蛋白分子,依靠不同的方式在细胞核和细胞质中参与细胞信号转导。黏着斑激酶(focal adhesion kinase,FAK)是一类细胞内的非受体酪氨酸激酶。FAK通常在细胞癌变后入核,此时主要通过非激酶依赖性途径发挥作用。如在皮肤鳞状细胞癌中,FAK与Runt相关转录因子1在细胞核中形成复合物,调控胰岛素样生长因子3表达,促进细胞增殖和肿瘤形成 [ 14] 。不过在大部分组织细胞中FAK定位在细胞质,通过激酶依赖性途径发挥作用 [ 15] 。如在表皮细胞生长因子刺激下,缺失外显子4的SRC-3剪接亚型磷酸化FAK,调控FAK与表皮细胞生长因子受体相互作用,促进细胞迁移 [ 16] 。

2 发生蛋白转位的结构蛋白

与受体和信号蛋白相比,细胞结构蛋白在信号传递过程中起到辅助作用,在正常组织中一般定位不会改变。其中细胞骨架蛋白、黏附分子和缝隙连接蛋白均在信号通路中发挥作用,参与细胞信号转导,且在正常组织中主要定位在细胞膜和细胞质中。然而,在肿瘤组织中,以这三类蛋白为代表的部分膜/质定位的结构蛋白会改变定位,发生入核。

2.1 细胞骨架蛋白

细胞骨架是由各种骨架蛋白组成的蛋白纤维网架体系,是细胞得以维持形态的基础,主要由微管、微丝和中间纤维组成,在细胞移动过程中起到了“指示灯”的作用。肌动蛋白是重要的细胞骨架蛋白,是微丝的主要成分,通常定位于细胞质中。之前的研究主要关注其在细胞骨架方面的作用,然而有研究人员发现其在核内异染色质的修复和稳定方面亦发挥重要作用。在异染色质向常染色质转换的过程中,肌动蛋白须从细胞质转位到细胞核中,参与染色质的组装。当肌动蛋白在肿瘤细胞中被携带入核后,肌动蛋白可以在核内累积,调控基因表达如上皮间质转化相关基因,影响肿瘤发展 [ 17] 。肌动蛋白在肿瘤中通常与促癌作用相关 [ 17] ,而且可以帮助新生的染色质准确定位到核周,从而避免和发生损伤的染色质错误的“联系” [ 18] 。

2.2 黏附分子

黏附分子互相黏合连接,形成机械力支撑并维持细胞正常形态。细胞结构蛋白的改变通常会导致细胞形态的不正常变化,影响细胞运动性和黏附性,与细胞癌变密切相关。上皮钙黏着蛋白作为钙离子依赖的细胞黏附素家族成员之一,在正常上皮组织中呈细胞膜定位 [ 19] ,发挥细胞黏附功能,并与多条信号通路激活息息相关 [ 20] 。不过在多种肿瘤如结直肠癌 [ 21] 、垂体腺瘤 [ 22] 、卵巢癌 [ 23] 的肿瘤组织中,上皮钙黏着蛋白在细胞膜上的表达量减少或缺失,出现核定位,在病理诊断中可用来判断肿瘤恶性程度。如结直肠癌患者肿瘤细胞核内上皮钙黏着蛋白乙酰化提示预后差 [ 24] 。此外,上皮钙黏着蛋白核中定位也参与转录因子kaiso介导的基因转录过程 [ 25] 。

2.3 缝隙连接蛋白

缝隙连接蛋白家族作为跨膜蛋白,参与调控细胞间通信,其氨基端和羧基端均位于细胞质中。连接蛋白43(connexin43,Cx43)作为分布最广泛的缝隙连接蛋白,通常定位在细胞膜上 [ 26] 。相邻细胞的胞吞过程通常发生在缝隙连接处,彼此的细胞膜有时会内化融合形成新的细胞膜,进而形成连接体,此时Cx43通过胞吞作用进入细胞质。细胞质中的Cx43通过磷酸化、泛素化和乙酰化等蛋白修饰来维持细胞质内蛋白含量的稳定 [ 27] 。研究证明,Cx43存在核定位现象,且与其羧基端关系密切。在人正常乳腺上皮细胞中,Cx43羧基端只能促进其向细胞核周围聚集 [ 28] ,而在子宫颈癌细胞系Hela中,Cx43可在羧基端作用下发生入核 [ 29] 。

3 结构蛋白入核的分子机制

功能蛋白可以通过定位的改变进行信号转导。核定位信号指具有入核能力的蛋白在羧基端的一小段氨基酸序列。具有核定位信号的蛋白,如转录因子Kruppel样因子6 [ 30- 31] ,在IL-1刺激下与p65在细胞核中形成复合物,从而调控NF-κB下游基因的转录 [ 32] 。结构蛋白在细胞信号异常时发生位置改变,导致疾病的发生。结构蛋白与一些没有核定位信号的功能蛋白缺少进入细胞核的“通行证”,想要进入细胞核中,需要额外的“帮助”。以下介绍蛋白入核的主要机制。

3.1 蛋白断裂

定位在细胞膜上的结构蛋白通常是跨膜蛋白。这类蛋白胞外结构被蛋白酶裂解,蛋白断裂,进入细胞质,其胞内部分可以入核。这些跨膜蛋白基本上是依赖羧基端的作用发生入核 [ 29, 33- 34] 。

3.1.1 化学信号刺激

化学信号是指生物产生的能够传递信息的化学物质。钙离子信号能够协助膜受体信号传递进入细胞核,有助于受体和钙调蛋白入核。与功能蛋白一样,结构蛋白也可以通过信号刺激发生入核。原钙黏着蛋白是钙黏着蛋白超家族中最大的亚家族,包括上皮钙黏着蛋白、神经钙黏着蛋白、视网膜钙黏着蛋白和胎盘钙黏着蛋白 [ 34] 。原钙黏着蛋白家族成员均包含一个跨膜结构域和一个细胞质内的羧基端保守区。钙离子内流除了协助膜受体信号传递进入细胞核,也在原钙黏着蛋白入核时发挥作用 [ 35- 36] 。此时,原钙黏着蛋白胞外部分被基质金属蛋白酶裂解,其胞内部分被γ-分泌酶活化入核 [ 34] 。如神经钙黏着蛋白在骨形态发生蛋白4的诱导下,断裂形成CTF1亚型,并在γ-分泌酶的活化作用下转变为只有羧基端的CTF2亚型,发生入核现象 [ 33] 。同样,上皮钙黏着蛋白经裂解,其相对分子质量由120 000降为100 000,发生入核 [ 37] 。

3.1.2 其他方式

机械力损伤也能促使蛋白结构断裂,原钙黏着蛋白的羧基端蛋白发生入核,此时原钙黏着蛋白不能继续发挥钙离子介导的细胞黏附作用 [ 38] ,蛋白功能发生改变。如肿瘤相关成纤维细胞由于神经钙黏着蛋白的黏附作用受到破坏,无法被癌细胞同化成“帮凶”,由原先促进肿瘤细胞侵袭和迁移转变为抑制作用 [ 39] 。

人为构建包含羧基端结构域的截短蛋白,也可以促使蛋白入核。研究表明,当过表达仅携带氨基端的原钙黏着蛋白截短蛋白,则不能在细胞核中检测到原钙黏着蛋白的表达 [ 34] 。在Hela细胞中,根据Cx43两个结构域构建截短蛋白,转染仅包含Cx43编码区243~382,即包含其羧基端的截短蛋白,在Hela细胞的细胞核中能够检测到Cx43的表达 [ 29] ,这说明Cx43羧基端能够调控其入核,并且Cx43氨基端可能阻碍了Cx43的入核。

3.2 蛋白质含量差异性改变

细胞中特定时期的特定蛋白数量保持稳定,然而因为一些细胞内蛋白修饰的改变或细胞外部的信号刺激,蛋白质含量会发生差异性改变,并导致蛋白转位入核。

正常情况下,细胞内的蛋白修饰通常维持在一个合理的范围内,保持特定蛋白分子数量的稳定性。当信号通路激活后,蛋白修饰状态改变导致其含量变化,最终改变蛋白的定位。例如Wnt信号激活会使细胞质内β-连环蛋白(β-catenin)的降解复合物解离,泛素化和磷酸化修饰均减少,细胞质内β-连环蛋白降解减少,含量增加。当β-连环蛋白在细胞质内积累到一定程度,入核与T细胞因子/淋巴增强因子启动子结合元件结合,激活下游靶基因转录 [ 40- 42] 。当Wnt信号沉默时,β-连环蛋白通过与降解复合物结合进而被磷酸化,维持细胞内蛋白稳定水平。此时β-连环蛋白可以与细胞核的上皮钙黏着蛋白相互结合,调控细胞间的黏附作用 [ 20] 。除了这些经典的信号通路相关蛋白,越来越多的新兴蛋白被发现参与信号通路过程。这些蛋白也可以在细胞质中直接富集从而发生入核。如Wnt信号被激活后,T淋巴瘤侵袭转移因子1就和β-连环蛋白一样,从细胞质中的降解复合物中解离,细胞质中的含量增加,从而入核 [ 43] 。

当信号通路在肿瘤组织中异常激活或失活,此时通路相关蛋白在细胞内含量发生改变,最终导致蛋白转位。p53凋亡刺激蛋白1(ASPP1)是凋亡刺激蛋白家族的一员,在调控肿瘤抑制因子p53介导的细胞凋亡方面发挥重要作用。在正常组织中,大肿瘤抑制因子2(large tumor suppressor homolog 2,Lats2)维持较高的表达水平,通过磷酸化细胞质内的ASPP1,与ASPP1共同入核,共同在细胞核内调控p53的转录活性,从而促进凋亡相关靶基因的表达,发挥抑癌作用 [ 44] 。在肿瘤组织中,磷酸化ASPP1因Lats2表达量减少而减少,ASPP1入核受到抑制,在细胞质中稳定表达并通过抑制细胞凋亡发挥促癌功能 [ 45] 。在正常组织中,Lats2还可以磷酸化Yes相关蛋白/转录共激活因子(YAP/TAZ)并导致蛋白降解,使YAP/TAZ在细胞质中维持较低的蛋白水平 [ 46] 。在肿瘤组织中,由于Lats2表达下调,YAP在细胞质中磷酸化修饰减少、表达量增加。此时原癌基因YAP“驱使”细胞质中富集的ASPP1成为它的“帮凶”。因此,Lats2通过对YAP磷酸化修饰而发挥的阻碍作用能够被细胞质中的ASPP1成功抑制。

细胞因子或药物刺激也会导致细胞内蛋白表达量的改变。如胰岛素样生长因子3在前列腺上皮细胞的细胞膜、细胞质和细胞核中都有表达 [ 47] 。在转化生长因子β1刺激下,细胞膜上的胰岛素样生长因子3表达下调,细胞核中表达上调,前列腺上皮细胞发生上皮间质转化。而在药物DZ-50刺激下,该蛋白在细胞膜的表达上调,细胞核中表达下调,前列腺上皮细胞发生间质上皮转化 [ 48] 。

3.3 蛋白相互结合

蛋白可在与其他蛋白协同作用或与核内蛋白质结合时定位于细胞核中。在肿瘤细胞中,这些蛋白通过结合或形成复合物入核,调控基因转录,影响或改变其生物学功能,发挥促进或抑制肿瘤发生发展的作用。

膜/质蛋白入核后通过结合信号通路相关蛋白,调控基因转录。YAP由于缺乏DNA结合结构域,通过与转录因子TAZ结合进入核内。YAP/TAZ复合物在核内主要通过与转录因子TEAD结合,调控Hippo信号通路基因转录 [ 49] 。IQ结构域GTP酶激活蛋白通常也定位在细胞质中,当Wnt信号被激活时,该蛋白能够与β-连环蛋白和巢乱蛋白形成复合物共同入核,参与调控Wnt信号通路 [ 50] 。

膜/质蛋白在肿瘤组织中通过形成复合物入核后常常参与影响肿瘤细胞的生物学功能。核内YAP和TAZ高表达促进肿瘤细胞增殖,发挥促癌作用 [ 49, 51] 。这在缝隙连接蛋白家族中也有相应的研究报道。在脑垂体的滤泡细胞中,细胞质中的连接蛋白46与细胞核内的核仁磷酸化蛋白140相互作用。研究显示,连接蛋白46入核后可能参与调控碱性成纤维细胞生长因子诱导的细胞增殖 [ 52] 。协助Cx43入核的羧基端结构域也可以影响细胞增殖。该结构域的缺失会抑制成骨细胞的增殖 [ 53] 。

与蛋白含量一样,外界刺激也可以阻碍或解除蛋白结合来阻止YAP入核或诱导YAP回到细胞质。研究发现,他汀类药物能够诱导胰腺细胞中的YAP从细胞核回到细胞质 [ 54] 。人巨细胞病毒可诱导核内肌动蛋白向核周移动 [ 55] 。

4 结语

作为生物体的分子物质基础,众多蛋白质的井然有序保证了从单个细胞到生物个体的运转和发展。一旦打破了这种平衡,一系列影响接踵而来。细胞关键蛋白失去了“秩序”是肿瘤发生发展的重要因素,研究肿瘤细胞膜/质蛋白转位入核具有重要意义。

同一蛋白质的功能并不单一,其能够在特定的位置发挥相应的功能。蛋白转位从理论上解释了这种现象出现的原因和必然性。蛋白质转位后,周边环境发生改变,可与新的蛋白发生相互作用,发挥新的蛋白功能。同时,也有蛋白因为转位而丧失原有的蛋白功能。

随着生物靶向治疗的发展,关键蛋白分子的深入研究有助于在临床应用中发现新的诊断标志物和治疗靶点。目前,临床病理工作者可以通过检测蛋白的异常表达对疾病作出诊断和进行早期治疗。未来,一些出现在肿瘤不同发展阶段的异常蛋白转位具备成为肿瘤分子标志物潜力。阻止这种异常蛋白转位的发生进而抑制肿瘤发生发展,也将成为我们寻找肿瘤分子靶点的新思路。

Funding Statement

浙江省自然科学基金(LY12H16027,LY17H160017);国家自然科学基金(30870971)

References1. FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Estimating the global cancer incidence and mortality in 2018:GLOBOCAN sources and methods. https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.31937. Int J Cancer. 2019;144(8):1941–1953. [FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Estimating the global cancer incidence and mortality in 2018:GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144(8):1941-1953.] [PubMed] [Google Scholar]2. GODBOLE A, LYGA S, LOHSE M J, et al. Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Nat Commun. 2017;8(1):443. doi: 10.1038/s41467-017-00357-2. [GODBOLE A, LYGA S, LOHSE M J, et al. Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription[J]. Nat Commun, 2017, 8(1):443.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]3. FRESIA C, VIGLIAROLO T, GUIDA L, et al. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2. Sci Rep. 2016;6:26658. doi: 10.1038/srep26658. [FRESIA C, VIGLIAROLO T, GUIDA L, et al. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2[J]. Sci Rep, 2016, 6:26658.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]4. LU P, HONTECILLAS R, HORNE W T, et al. Computational modeling-based discovery of novel classes of anti-inflammatory drugs that target lanthionine synthetase C-like protein 2[J/OL]. PLoS One, 2012, 7(4): e34643. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324509/ [PMC free article] [PubMed]5. DURSUN E, GEZEN-AK D. Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin[J/OL]. PLoS One, 2017, 12(11): e0188605. http://europepmc.org/abstract/MED/29176823. [PMC free article] [PubMed]6. FOLLIS A V, LLAMBI F, MERRITT P, et al. Pin1-induced proline isomerization in cytosolic p53 mediates BAX activation and apoptosis. Mol Cell. 2015;59(4):677–684. doi: 10.1016/j.molcel.2015.06.029. [FOLLIS A V, LLAMBI F, MERRITT P, et al. Pin1-induced proline isomerization in cytosolic p53 mediates BAX activation and apoptosis[J]. Mol Cell, 2015, 59(4):677-684.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]7. LEVINE A J, OREN M. The first 30 years of p53:growing ever more complex. Nat Rev Cancer. 2009;9(10):749–758. doi: 10.1038/nrc2723. [LEVINE A J, OREN M. The first 30 years of p53:growing ever more complex[J]. Nat Rev Cancer, 2009, 9(10):749-758.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]8. DUFFY M J, SYNNOTT N C, MCGOWANP M, et al. p53 as a target for the treatment of cancer. Cancer Treat Rev. 2014;40(10):1153–1160. doi: 10.1016/j.ctrv.2014.10.004. [DUFFY M J, SYNNOTT N C, MCGOWANP M, et al. p53 as a target for the treatment of cancer[J]. Cancer Treat Rev, 2014, 40(10):1153-1160.] [PubMed] [CrossRef] [Google Scholar]9. ZHANG M Y, HARHAJ E W, BELL L, et al. Bcl-3 expression and nuclear translocation are induced by granulocyte-macrophage colony-stimulating factor and erythropoietin in proliferating human erythroid precursors. http://www.bloodjournal.org/content/92/4/1225?sso-checked=true. Blood. 1998;92(4):1225–1234. [ZHANG M Y, HARHAJ E W, BELL L, et al. Bcl-3 expression and nuclear translocation are induced by granulocyte-macrophage colony-stimulating factor and erythropoietin in proliferating human erythroid precursors[J]. Blood, 1998, 92(4):1225-1234.] [PubMed] [Google Scholar]10. MASSOUMI R, CHMIELARSKA K, HENNECKE K, et al. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling. Cell. 2006;125(4):665–677. doi: 10.1016/j.cell.2006.03.041. [MASSOUMI R, CHMIELARSKA K, HENNECKE K, et al. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling[J]. Cell, 2006, 125(4):665-677.] [PubMed] [CrossRef] [Google Scholar]11. WANG V Y, LI Y, KIM D, et al. Bcl3 phosphorylation by Akt, Erk2, and IKK is required for its transcriptional activity. Mol Cell. 2017;67(3):484–497.e5. doi: 10.1016/j.molcel.2017.06.011. [WANG V Y, LI Y, KIM D, et al. Bcl3 phosphorylation by Akt, Erk2, and IKK is required for its transcriptional activity[J]. Mol Cell, 2017, 67(3):484-497.e5.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]12. SONG L, WÖRMANN S, AI J, et al. BCL3 reduces the sterile inflammatory response in pancreatic and biliary tissues. Gastroenterology. 2016;150(2):499–512.e20. doi: 10.1053/j.gastro.2015.10.017. [SONG L, WÖRMANN S, AI J, et al. BCL3 reduces the sterile inflammatory response in pancreatic and biliary tissues[J]. Gastroenterology, 2016, 150(2):499-512.e20.] [PubMed] [CrossRef] [Google Scholar]13. BRASIER A R, LU M, HAI T, et al. NF-kappa B-inducible BCL-3 expression is an autoregulatory loop controlling nuclear p50/NF-kappa B1 residence. J Biol Chem. 2001;276(34):32080–32093. doi: 10.1074/jbc.M102949200. [BRASIER A R, LU M, HAI T, et al. NF-kappa B-inducible BCL-3 expression is an autoregulatory loop controlling nuclear p50/NF-kappa B1 residence[J]. J Biol Chem, 2001, 276(34):32080-32093.] [PubMed] [CrossRef] [Google Scholar]14. CANEL M, BYRON A, SIMS A H, et al. Nuclear FAK and Runx1 cooperate to regulate IGFBP3, cell-cycle progression, and tumor growth. Cancer Res. 2017;77(19):5301–5312. doi: 10.1158/0008-5472.CAN-17-0418. [CANEL M, BYRON A, SIMS A H, et al. Nuclear FAK and Runx1 cooperate to regulate IGFBP3, cell-cycle progression, and tumor growth[J]. Cancer Res, 2017, 77(19):5301-5312.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]15. WAN Q, TRUONGVO T, STEELE H E, et al. Subcellular domain-dependent molecular hierarchy of SFK and FAK in mechanotransduction and cytokine signaling. Sci Rep. 2017;7(1):9033. doi: 10.1038/s41598-017-09495-5. [WAN Q, TRUONGVO T, STEELE H E, et al. Subcellular domain-dependent molecular hierarchy of SFK and FAK in mechanotransduction and cytokine signaling[J]. Sci Rep, 2017, 7(1):9033.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]16. LONG W, YI P, AMAZIT L, et al. SRC-3Delta4 mediates the interaction of EGFR with FAK to promote cell migration. Mol Cell. 2010;37(3):321–332. doi: 10.1016/j.molcel.2010.01.004. [LONG W, YI P, AMAZIT L, et al. SRC-3Delta4 mediates the interaction of EGFR with FAK to promote cell migration[J]. Mol Cell, 2010, 37(3):321-332.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]17. IZDEBSKA M, ZIELIN'SKA W, GRZANKA D, et al. The role of actin dynamics and actin-binding proteins expression in epithelial-to-mesenchymal transition and its association with cancer progression and evaluation of possible therapeutic targets. https://www.hindawi.com/journals/bmri/2018/4578373/ Biomed Res Int. 2018;2018:4578373. [IZDEBSKA M, ZIELIN'SKA W, GRZANKA D, et al. The role of actin dynamics and actin-binding proteins expression in epithelial-to-mesenchymal transition and its association with cancer progression and evaluation of possible therapeutic targets[J]. Biomed Res Int, 2018, 2018:4578373.] [PMC free article] [PubMed] [Google Scholar]18. CARIDI C P, D'AGOSTINO C, RYU T, et al. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature. 2018;559(7712):54–60. doi: 10.1038/s41586-018-0242-8. [CARIDI C P, D'AGOSTINO C, RYU T, et al. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks[J]. Nature, 2018, 559(7712):54-60.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]19. GLOERICH M, BIANCHINI J M, SIEMERS K A, et al. Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex. Nat Commun. 2017;8:13996. doi: 10.1038/ncomms13996. [GLOERICH M, BIANCHINI J M, SIEMERS K A, et al. Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex[J]. Nat Commun, 2017, 8:13996.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]20. DU W, LIU X, FAN G, et al. From cell membrane to the nucleus:an emerging role of E-cadherin in gene transcriptional regulation. J Cell Mol Med. 2014;18(9):1712–1719. doi: 10.1111/jcmm.12340. [DU W, LIU X, FAN G, et al. From cell membrane to the nucleus:an emerging role of E-cadherin in gene transcriptional regulation[J]. J Cell Mol Med, 2014, 18(9):1712-1719.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]21. CÉSPEDES M V, LARRIBA M J, PAVÓNM A, et al. Site-dependent E-cadherin cleavage and nuclear translocation in a metastatic colorectal cancer model. Am J Pathol. 2010;177(4):2067–2079. doi: 10.2353/ajpath.2010.100079. [CÉSPEDES M V, LARRIBA M J, PAVÓNM A, et al. Site-dependent E-cadherin cleavage and nuclear translocation in a metastatic colorectal cancer model[J]. Am J Pathol, 2010, 177(4):2067-2079.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]22. ELSTON M S, GILL A J, CONAGLENJ V, et al. Nuclear accumulation of e-cadherin correlates with loss of cytoplasmic membrane staining and invasion in pituitary adenomas. J Clin Endocrinol Metab. 2009;94(4):1436–1442. doi: 10.1210/jc.2008-2075. [ELSTON M S, GILL A J, CONAGLENJ V, et al. Nuclear accumulation of e-cadherin correlates with loss of cytoplasmic membrane staining and invasion in pituitary adenomas[J]. J Clin Endocrinol Metab, 2009, 94(4):1436-1442.] [PubMed] [CrossRef] [Google Scholar]23. OHISHI Y, ODA Y, KURIHARA S, et al. Nuclear localization of E-cadherin but not beta-catenin in human ovarian granulosa cell tumours and normal ovarian follicles and ovarian stroma. Histopathology. 2011;58(3):423–432. doi: 10.1111/j.1365-2559.2011.03761.x. [OHISHI Y, ODA Y, KURIHARA S, et al. Nuclear localization of E-cadherin but not beta-catenin in human ovarian granulosa cell tumours and normal ovarian follicles and ovarian stroma[J]. Histopathology, 2011, 58(3):423-432.] [PubMed] [CrossRef] [Google Scholar]24. ZHAO Y, YU T, ZHANG N, et al. Nuclear E-cadherin acetylation promotes colorectal tumorigenesis via enhancing beta-catenin activity. Mol Cancer Res. 2019;17(2):655–665. doi: 10.1158/1541-7786.MCR-18-0637. [ZHAO Y, YU T, ZHANG N, et al. Nuclear E-cadherin acetylation promotes colorectal tumorigenesis via enhancing beta-catenin activity[J]. Mol Cancer Res, 2019, 17(2):655-665.] [PubMed] [CrossRef] [Google Scholar]25. FERBER E C, KAJITA M, WADLOW A, et al. A role for the cleaved cytoplasmic domain of E-cadherin in the nucleus. J Biol Chem. 2008;283(19):12691–12700. doi: 10.1074/jbc.M708887200. [FERBER E C, KAJITA M, WADLOW A, et al. A role for the cleaved cytoplasmic domain of E-cadherin in the nucleus[J]. J Biol Chem, 2008, 283(19):12691-12700.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]26. YANCEY S B, JOHN S A, LAL R, et al. The 43-kD polypeptide of heart gap junctions:immunolocalization, topology, and functional domains. J Cell Biol. 1989;108(6):2241–2254. doi: 10.1083/jcb.108.6.2241. [YANCEY S B, JOHN S A, LAL R, et al. The 43-kD polypeptide of heart gap junctions:immunolocalization, topology, and functional domains[J]. J Cell Biol, 1989, 108(6):2241-2254.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]27. SIRNES S, LIND G E, BRUUN J, et al. Connexins in colorectal cancer pathogenesis. Int J Cancer. 2015;137(1):1–11. doi: 10.1002/ijc.28911. [SIRNES S, LIND G E, BRUUN J, et al. Connexins in colorectal cancer pathogenesis[J]. Int J Cancer, 2015, 137(1):1-11.] [PubMed] [CrossRef] [Google Scholar]28. MOORER M C, HEBERT C, TOMLINSONR E, et al. Defective signaling, osteoblastogenesis and bone remodeling in a mouse model of connexin 43 C-terminal truncation. J Cell Sci. 2017;130(3):531–540. doi: 10.1242/jcs.197285. [MOORER M C, HEBERT C, TOMLINSONR E, et al. Defective signaling, osteoblastogenesis and bone remodeling in a mouse model of connexin 43 C-terminal truncation[J]. J Cell Sci, 2017, 130(3):531-540.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]29. DANG X, DOBLE B W, KARDAMI E. The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1206845319bb06c7881459a05d34ac1c. Mol Cell Biochem. 2003;242(1-2):35–38. [DANG X, DOBLE B W, KARDAMI E. The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth[J]. Mol Cell Biochem, 2003, 242(1-2):35-38.] [PubMed] [Google Scholar]30. LAITMAN B M, ASP L, MARIANI J N, et al. The transcriptional activator Krüppel-like factor-6 is required for CNS myelination[J/OL]. PLoS Biol, 2016, 14(5): e1002467. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877075/ [PMC free article] [PubMed]31. RODRÍGUEZ E, ABURJANIA N, PRIEDIGKEITN M, et al. Nucleo-cytoplasmic localization domains regulate Krüppel-like factor 6(KLF6) protein stability and tumor suppressor function[J/OL]. PLoS One, 2010, 5(9). pii: e12639. https://www.ncbi.nlm.nih.gov/pubmed/20844588. [PMC free article] [PubMed]32. ZHANG Y, LEI C Q, HU Y H, et al. Kruppel-like factor 6 is a co-activator of NF-kappaB that mediates p65-dependent transcription of selected downstream genes. J Biol Chem. 2014;289(18):12876–12885. doi: 10.1074/jbc.M113.535831. [ZHANG Y, LEI C Q, HU Y H, et al. Kruppel-like factor 6 is a co-activator of NF-kappaB that mediates p65-dependent transcription of selected downstream genes[J]. J Biol Chem, 2014, 289(18):12876-12885.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]33. SHOVAL I, LUDWIG A, KALCHEIM C. Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=980d85ee195ad63fc5d17bc5b1a97ce6. Development. 2007;134(3):491–501. [SHOVAL I, LUDWIG A, KALCHEIM C. Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination[J]. Development, 2007, 134(3):491-501.] [PubMed] [Google Scholar]34. HAMBSCH B, GRINEVICH V, SEEBURGP H, et al. γ-Protocadherins, presenilin-mediated release of C-terminal fragment promotes locus expression. J Biol Chem. 2005;280(16):15888–15897. doi: 10.1074/jbc.M414359200. [HAMBSCH B, GRINEVICH V, SEEBURGP H, et al. γ-Protocadherins, presenilin-mediated release of C-terminal fragment promotes locus expression[J]. J Biol Chem, 2005, 280(16):15888-15897.] [PubMed] [CrossRef] [Google Scholar]35. BERS D M. Membrane receptor neighborhoods:snuggling up to the nucleus. Circ Res. 2013;112(2):224–226. doi: 10.1161/CIRCRESAHA.112.300494. [BERS D M. Membrane receptor neighborhoods:snuggling up to the nucleus[J]. Circ Res, 2013, 112(2):224-226.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]36. MALIK Z A, STEIN I S, NAVEDOM F, et al. Mission CaMKⅡgamma:shuttle calmodulin from membrane to nucleus. Cell. 2014;159(2):235–237. doi: 10.1016/j.cell.2014.09.023. [MALIK Z A, STEIN I S, NAVEDOM F, et al. Mission CaMKⅡgamma:shuttle calmodulin from membrane to nucleus[J]. Cell, 2014, 159(2):235-237.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]37. BARSHISHAT M, POLAK-CHARCON S, SCHWARTZ B. Butyrate regulates E-cadherin transcription, isoform expression and intracellular position in colon cancer cells. Br J Cancer. 2000;82(1):195–203. doi: 10.1054/bjoc.1999.0899. [BARSHISHAT M, POLAK-CHARCON S, SCHWARTZ B. Butyrate regulates E-cadherin transcription, isoform expression and intracellular position in colon cancer cells[J]. Br J Cancer, 2000, 82(1):195-203.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]38. LECUIT T, YAP A S. E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat Cell Biol. 2015;17(5):533–539. doi: 10.1038/ncb3136. [LECUIT T, YAP A S. E-cadherin junctions as active mechanical integrators in tissue dynamics[J]. Nat Cell Biol, 2015, 17(5):533-539.] [PubMed] [CrossRef] [Google Scholar]39. LABERNADIE A, KATO T, BRUGUÉS A, et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol. 2017;19(3):224–237. doi: 10.1038/ncb3478. [LABERNADIE A, KATO T, BRUGUÉS A, et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion[J]. Nat Cell Biol, 2017, 19(3):224-237.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]40. MCCREA P D, GOTTARDI C J. Beyond beta-catenin:prospects for a larger catenin network in the nucleus. https://www.nature.com/articles/nrm.2015.3. Nat Rev Mol Cell Biol. 2016;17(1):55–64. [MCCREA P D, GOTTARDI C J. Beyond beta-catenin:prospects for a larger catenin network in the nucleus[J]. Nat Rev Mol Cell Biol, 2016, 17(1):55-64.] [PMC free article] [PubMed] [Google Scholar]41. CLEVERS H, NUSSE R. Wnt/beta-catenin signaling and disease. Cell. 2012;149(6):1192–1205. doi: 10.1016/j.cell.2012.05.012. [CLEVERS H, NUSSE R. Wnt/beta-catenin signaling and disease[J]. Cell, 2012, 149(6):1192-1205.] [PubMed] [CrossRef] [Google Scholar]42. DEBRUINE Z J, XU H E, MELCHER K. Assembly and architecture of the Wnt/beta-catenin signalosome at the membrane. Br J Pharmacol. 2017;174(24):4564–4574. doi: 10.1111/bph.14048. [DEBRUINE Z J, XU H E, MELCHER K. Assembly and architecture of the Wnt/beta-catenin signalosome at the membrane[J]. Br J Pharmacol, 2017, 174(24):4564-4574.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]43. DIAMANTOPOULOU Z, WHITE G, MZH F, et al. TIAM1 antagonizes TAZ/YAP both in the destruction complex in the cytoplasm and in the nucleus to inhibit invasion of intestinal epithelial cells. Cancer Cell. 2017;31(5):621–634. doi: 10.1016/j.ccell.2017.03.007. [DIAMANTOPOULOU Z, WHITE G, MZH F, et al. TIAM1 antagonizes TAZ/YAP both in the destruction complex in the cytoplasm and in the nucleus to inhibit invasion of intestinal epithelial cells[J]. Cancer Cell, 2017, 31(5):621-634.e6.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]44. AYLON Y, OFIR-ROSENFELD Y, YABUTA N, et al. The Lats2 tumor suppressor augments p53-mediated apoptosis by promoting the nuclear proapoptotic function of ASPP1. Genes Dev. 2010;24(21):2420–2429. doi: 10.1101/gad.1954410. [AYLON Y, OFIR-ROSENFELD Y, YABUTA N, et al. The Lats2 tumor suppressor augments p53-mediated apoptosis by promoting the nuclear proapoptotic function of ASPP1[J]. Genes Dev, 2010, 24(21):2420-2429.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]45. VIGNERON A M, LUDWIG R L, VOUSDENK H. Cytoplasmic ASPP1 inhibits apoptosis through the control of YAP. Genes Dev. 2010;24(21):2430–2439. doi: 10.1101/gad.1954310. [VIGNERON A M, LUDWIG R L, VOUSDENK H. Cytoplasmic ASPP1 inhibits apoptosis through the control of YAP[J]. Genes Dev, 2010, 24(21):2430-2439.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]46. GUO L, TENG L. YAP/TAZ for cancer therapy:opportunities and challenges (review) Int J Oncol. 2015;46(4):1444–1452. doi: 10.3892/ijo.2015.2877. [GUO L, TENG L. YAP/TAZ for cancer therapy:opportunities and challenges (review)[J]. Int J Oncol, 2015, 46(4):1444-1452.] [PubMed] [CrossRef] [Google Scholar]47. LEE K W, COBB L J, PAHARKOVA-VATCHKOVA V, et al. Contribution of the orphan nuclear receptor Nur77 to the apoptotic action of IGFBP-3. Carcinogenesis. 2007;28(8):1653–1658. doi: 10.1093/carcin/bgm088. [LEE K W, COBB L J, PAHARKOVA-VATCHKOVA V, et al. Contribution of the orphan nuclear receptor Nur77 to the apoptotic action of IGFBP-3[J]. Carcinogenesis, 2007, 28(8):1653-1658.] [PubMed] [CrossRef] [Google Scholar]48. CAO Z, KOOCHEKPOUR S, STRUP S E, et al. Reversion of epithelial-mesenchymal transition by a novel agent DZ-50 via IGF binding protein-3 in prostate cancer cells. https://uknowledge.uky.edu/urology_facpub/4/ Oncotarget. 2017;8(45):78507–78519. [CAO Z, KOOCHEKPOUR S, STRUP S E, et al. Reversion of epithelial-mesenchymal transition by a novel agent DZ-50 via IGF binding protein-3 in prostate cancer cells[J]. Oncotarget, 2017, 8(45):78507-78519.] [PMC free article] [PubMed] [Google Scholar]49. SANTUCCI M, VIGNUDELLI T, FERRARI S, et al. The hippo pathway and YAP/TAZ-TEAD protein-protein interaction as targets for regenerative medicine and cancer treatment. J Med Chem. 2015;58(12):4857–4873. doi: 10.1021/jm501615v. [SANTUCCI M, VIGNUDELLI T, FERRARI S, et al. The hippo pathway and YAP/TAZ-TEAD protein-protein interaction as targets for regenerative medicine and cancer treatment[J]. J Med Chem, 2015, 58(12):4857-4873.] [PubMed] [CrossRef] [Google Scholar]50. SMITH J M, HEDMAN A C, SACKS D B. IQGAPs choreograph cellular signaling from the membrane to the nucleus. Trends Cell Biol. 2015;25(3):171–184. doi: 10.1016/j.tcb.2014.12.005. [SMITH J M, HEDMAN A C, SACKS D B. IQGAPs choreograph cellular signaling from the membrane to the nucleus[J]. Trends Cell Biol, 2015, 25(3):171-184.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]51. CHAN S W, LIM C J, GUO K, et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res. 2008;68(8):2592–2598. doi: 10.1158/0008-5472.CAN-07-2696. [CHAN S W, LIM C J, GUO K, et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells[J]. Cancer Res, 2008, 68(8):2592-2598.] [PubMed] [CrossRef] [Google Scholar]52. VITALE M L, GARCIA C J, AKPOVI C D, et al. Distinctive actions of connexin 46 and connexin 50 in anterior pituitary folliculostellate cells[J/OL]. PLoS One, 2017, 12(7): e0182495. [PMC free article] [PubMed]53. MOORBY C, PATEL M. Dual functions for connexins:Cx43 regulates growth independently of gap junction formation. Exp Cell Res. 2001;271(2):238–248. doi: 10.1006/excr.2001.5357. [MOORBY C, PATEL M. Dual functions for connexins:Cx43 regulates growth independently of gap junction formation[J]. Exp Cell Res, 2001, 271(2):238-248.] [PubMed] [CrossRef] [Google Scholar]54. HAO F, XU Q, WANG J, et al. Lipophilic statins inhibit YAP nuclear localization, co-activator activity and colony formation in pancreatic cancer cells and prevent the initial stages of pancreatic ductal adenocarcinoma in KrasG12D mice[J/OL]. PLoS One, 2019, 14(5): e0216603. https://www.researchgate.net/publication/333179304_Lipophilic_statins_inhibit_YAP_nuclear_localization_co-activator_activity_and_colony_formation_in_pancreatic_cancer_cells_and_prevent_the_initial_stages_of_pancreatic_ductal_adenocarcinoma_in_KrasG12D. [PMC free article] [PubMed]55. WILKIE A R, LAWLER J L, COEN D M. A role for nuclear F-actin induction in human cytomegalovirus nuclear egress[J]. MBio, 2016, 7(4). pii: e01254-16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4999551/ [PMC free article] [PubMed]


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3