相关系数(Correlation coefficient)

您所在的位置:网站首页 相关性r的取值范围 相关系数(Correlation coefficient)

相关系数(Correlation coefficient)

2024-07-10 22:52| 来源: 网络整理| 查看: 265

本文转自:http://wiki.mbalib.com/wiki/相关系数 什么是相关系数

  相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。

  著名统计学家卡尔·皮尔逊设计了统计指标——相关系数。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。

  依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。

相关系数的几种定义

  相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量。由于研究对象的不同,相关系数有如下几种定义方式。

  简单相关系数:又叫相关系数或线性相关系数,一般用字母P 表示,是用来度量变量间的线性关系的量。

  复相关系数:又叫多重相关系数。复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的季节性需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。

  典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性关系的综合指标,再通过综合指标之间的线性相关系数来研究原各组变量间相关关系。

相关系数的性质[1]

  (1)|\rho_{XY}| \le 1

  (2)定理: | ρXY | = 1的充要条件是,存在常数a,b,使得\rho \left\{ Y=a+bX \right\}=1

  相关系数ρXY取值在-1到1之问,ρXY = 0时,

  称X,Y不相关; | ρXY | = 1时,称X,Y完全相关,此时,X,Y之间具有线性函数关系; | ρXY | < 1时,X的变动引起Y的部分变动,ρXY的绝对值越大,X的变动引起Y的变动就越大, | ρXY | > 0.8时称为高度相关,当\rho^2_{XY}0.09,即 | ρXY | < 0.3时,称为低度相关,其他为中度相关。

  (3)推论:若Y=a+bX,则有

  \rho_{XY}=\begin{cases} 1, & b0 \\ 0, & b=0 \\ -1, & b0 \end{cases}

  证明: 令E(X) = μ,D(X) = σ2

  则E(Y) = bμ + a,D(Y) =b2σ2

  E(XY) = E(aX + bX2) = aμ + b(σ2 + μ2)

  Cov(X,Y) = E(XY) −E(X)E(Y) = bσ2

  若b≠0,则\rho=\frac{Cov(X,Y)}{\sqrt{D(X)} \sqrt{D(Y)}}= \frac{b\sigma^2}{\sigma |b| \sigma}=\begin{cases} 1, & b0 \\ -1, & b0 \end{cases}

  若b=0,则ρXY = 0。

相关系数的计算方法

  相关系数的公式如下:[2]

  r=\frac{\sigma{xy}}{\sigma_x\sigma_y}  (1)

  \sigma{xy}=\sigma^2{xy}=\frac{\sum(x-\overline{x})(y-\overline{y})}{n}

  \sigma_x=\sqrt{\frac{\sum(x-\overline{x})^2}{n}}

  \sigma_y=\sqrt{\frac{\sum(y-\overline{y}^2)}{n}}

  r=\frac{\sum(x-\overline{x})(y-\overline{y})}{\sqrt{\sum(x-\overline{x})^2\sum(y-\overline{y})^2}}  (2)

  =\frac{n\sum xy-\sum x\sum y}{\sqrt{n\sum x^2-(\sum x)^2}\cdot\sqrt{n\sum y^2-(\sum y)^2}}  (3)

  =\frac{n^2[\frac{\sum xy}{n}-]}{\frac{\sum x}{n}-\frac{\sum y}{n}}{\sqrt{n^2[\frac{\sum x^2}{n}-(\frac{\sum x}{n})^2]\cdot\sqrt n^2[\frac{\sum y^2}{n}-(\frac{\sum y}{n})^2]}}  (4)

  =\frac{\overline{xy}-\overline{x}\overline{y}}{\sqrt{\sum\overline{x^2}-(\overline{x})^2}\cdot\sqrt{\sum\overline{y^2}-(\overline{y})^2}}  (5)

  L_{xx}=\sum(x-\overline{x})^2=\sum x^2-\frac{(\sum x)^2}{n}

  L_{yy}\sum(y-\overline{y})^2=\sum y^2-\frac{(\sum y)^2}{n}

  L_{xy}=\sum(x-\overline{x})(y-\overline{y})=\sum xy-\frac{\sum x \sum y}{n}

  r=\frac{L_{xy}}{\sqrt{L_{xx}L_{yy}}}

  相关系数的值介于–1与+1之间,即–1≤r≤+1。其性质如下:

当r>0时,表示两变量正相关,r


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3