电动汽车直流斩波调速

您所在的位置:网站首页 直流斩波电路的应用实例 电动汽车直流斩波调速

电动汽车直流斩波调速

2024-07-15 12:57| 来源: 网络整理| 查看: 265

1、电动汽车的发动机是什么?

电动汽车的基本结构2006-1-9 21:57:33 次数:1552电动汽车的组成包括电力驱动及控制系统、驱动力传动等机械系统、完成既定任务的工作装置等。电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。电力驱动及控制系统由驱动电动机、电源和电动机的调速控制装置等组成。电动汽车的其他装置基本与内燃机汽车相同。电源电源为电动汽车的驱动电动机提供电能,电动机将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。目前,电动汽车上应用最广泛的电源是铅酸蓄电池,但随着电动汽车技术的发展,铅酸蓄电池由于比能量较低,充电速度较慢,寿命较短,逐渐被其他蓄电池所取代。正在发展的电源主要有钠硫电池、镍铬电池、锂电池、燃料电池、飞轮电池等,这些新型电源的应用,为电动汽车的发展开辟了广阔的前景。驱动电动机驱动电动机的作用是将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。目前电动汽车上广泛采用直流串激电动机,这种电机具有"软"的机械特性,与汽车的行驶特性非常相符。但直流电动机由于存在换向火花,比功率较小、效率较低,维护保养工作量大,随着电机技术和电机控制技术的发展,势必逐渐被直流无刷电动机(BCDM)、开关磁阻电动机(SRM)和交流异步电动机所取代。电动机调速控制装置电动机调速控制装置是为电动汽车的变速和方向变换等设置的,其作用是控制电动机的电压或电流,完成电动机的驱动转矩和旋转方向的控制。早期的电动汽车上,直流电动机的调速采用串接电阻或改变电动机磁场线圈的匝数来实现。因其调速是有级的,且会产生附加的能量消耗或使用电动机的结构复杂,现在已很少采用。目前电动汽车上应用较广泛的是晶闸管斩波调速,通过均匀地改变电动机的端电压,控制电动机的电流,来实现电动机的无级调速。在电子电力技术的不断发展中,它也逐渐被其他电力晶体管(入GTO、MOSFET、BTR及IGBT等)斩波调速装置所取代。从技术的发展来看,伴随着新型驱动电机的应用,电动汽车的调速控制转变为直流逆变技术的应用,将成为必然的趋势。在驱动电动机的旋向变换控制中,直流电动机依靠接触器改变电枢或磁场的电流方向,实现电动机的旋向变换,这使得孔子哈电路复杂、可靠性降低。当采用交流异步电动机驱动时,电动机转向的改变只需变换磁场三相电流的相序即可,可使控制电路简化。此外,采用交流电动机及其变频调速控制技术,使电动汽车的制动能量回收控制更加方便,控制电路更加简单。传动装置电动汽车传动装置的作用是将电动机的驱动转矩传给汽车的驱动轴,当采用电动轮驱动时,传动装置的多数部件常常可以忽略。因为电动机可以带负载启动,所以电动汽车上无需传统内燃机汽车的离合器。因为驱动电机的旋向可以通过电路控制实现变换,所以电动汽车无需内燃机汽车变速器中的倒档。当采用电动机无级调速控制时,电动汽车可以忽略传统汽车的变速器。在采用电动轮驱动时,电动汽车也可以省略传统内燃机汽车传动系统的差速器。行驶装置行驶装置的作用是将电动机的驱动力矩通过车轮变成对地面的作用力,驱动车轮行走。它同其他汽车的构成是相同的,由车轮、轮胎和悬架等组成。转向装置专项装置是为实现汽车的转弯而设置的,由转向机、方向盘、转向机构和转向轮等组成。作用在方向盘上的控制力,通过转向机和转向机构使转向轮偏转一定的角度,实现汽车的转向。多数电动汽车为前轮转向,工业中用的电动叉车常常采用后轮转向。电动汽车的转向装置有机械转向、液压转向和液压助力转向等类型。制动装置电动汽车的制动装置同其他汽车一样,是为汽车减速或停车而设置的,通常由制动器及其操纵装置组成。在电动汽车上,一般还有电磁制动装置,它可以利用驱动电动机的控制电路实现电动机的发电运行,使减速制动时的能量转换成对蓄电池充电的电流,从而得到再生利用。工作装置工作装置是工业用电动汽车为完成作业要求而专门设置的,如电动叉车的起升装置、门架、货叉等。货叉的起升和门架的倾斜通常由电动机驱动的液压系统完成。

2、新能源汽车电动机的性能指标有哪些

新能源汽车是指采用非常规的车用燃料作为动力来源,综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。新能源汽车种类:1、纯电动汽车是一种采用单一蓄电池作为储能动力源的汽车,它利用蓄电池作为储能动力源,通过电池向电动机提供电能,驱动电动机运转,从而推动汽车行驶。2、混合动力汽车是指驱动系统由两个或多个能同时运转的单个驱动系联合组成的车辆,车辆的行驶功率依据实际的车辆行驶状态由单个驱动系单独或多个驱动系共同提供。3、其他新能源汽车包括使用超级电容器、飞轮等高效储能器的汽车。目前在我国,新能源汽车主要是指纯电动汽车、增程式电动汽车、插电式混合动力汽车和燃料电池电动汽车,常规混合动力汽车被划分为节能汽车。

3、新能源电动汽车的驱动电动机

驱动电动机的作用是将电源的电能转化为机械能,通过传动装置或直接驱动车轮和工作装置。目前电动汽车上广泛采用直流串激电动机,这种电机具有软的机械特性,与汽车的行驶特性非常相符。但直流电动机由于存在换向火花,功率小、效率低,维护保养工作量大;随着电机控制技术的发展,势必逐渐被直流无刷电动机(BLDCM)、开关磁阻电动机(SRM)和交流异步电动机所取代,如无外壳盘式轴向磁场直流串励电动机。 电动机调速控制装置是为电动汽车的变速和方向变换等设置的,其作用是控制电动机的电压或电流,完成电动机的驱动转矩和旋转方向的控制。早期的电动汽车上,直流电动机的调速采用串接电阻或改变电动机磁场线圈的匝数来实现。因其调速是有级的,且会产生附加的能量消耗或使用电动机的结构复杂,现已很少采用。目前应用较广泛的是晶闸管斩波调速,通过均匀地改变电动机的端电压,控制电动机的电流,来实现电动机的无级调速。在电子电力技术的不断发展中,它也逐渐被其他电力晶体管(入GTO、MOSFET、BTR及IGBT等)斩波调速装置所取代。从技术的发展来看,伴随着新型驱动电机的应用,电动汽车的调速控制转变为直流逆变技术的应用,将成为必然的趋势。在驱动电动机的旋向变换控制中,直流电动机依靠接触器改变电枢或磁场的电流方向,实现电动机的旋向变换,这使得电路复杂、可靠性降低。当采用交流异步电动机驱动时,电动机转向的改变只需变换磁场三相电流的相序即可,可使控制电路简化。此外,采用交流电动机及其变频调速控制技术,使电动汽车的制动能量回收控制更加方便,控制电路更加简单。 电动汽车的制动装置同其他汽车一样,是为汽车减速或停车而设置的,通常由制动器及其操纵装置组成。在 电动汽车上,一般还有电磁制动装置,它可以利用驱动电动机的控制电路实现电动机的发电运行,使减速制动时的能量转换成对蓄电池充电的电流,从而得到再生利用。目前国内电动汽车在大功率载客汽车,给提供空气制动设备有耐力NAILI滑片式空气压缩机,主要是压缩空气的制动方式。

4、现在的电动车是怎么控制加速或减速的?(可以载成年人的那种电动车啊)

动力系统有这几部分构成:直流永磁电动机、控制器、蓄电池、刹车装置、转把。永磁电动机:当加到线圈上的电压越高,速度越快,反之越慢。控制器:是一个直流斩波控制器,通过调节电动机上的电压(占空比)来调节电动机速度。转把:是个霍尔传感器,转把时候 ,传感器输出1-5V(一般)电压,该电压输入到控制器,进而控制控制器电压输出。

5、汽车直流电动机的优缺点?

你好:直流电机的优点: 调速性能良好,直流电机具有良好的电磁转矩控制特性,可实现均匀平滑的无级调速,具有较宽的调速范围。起动性能好,直流电机具有较大的起动转矩。具有较宽的恒功率范围,直流电机恒功率输出范围较宽,可确保电动汽车具有较好的低速起动性能和高速行驶能力。 控制较为简单,直流电机可采用斩波器实现调速控制,具有控制灵活且高效、质量轻、体积小、响应快等特点。价格便宜,直流电机的制造技术和控制技术都比较成熟,价格较便宜。直流电机的主要缺点:效率低,维护工作量大,电刷和换向器之间会产生换向火花,换向器容易烧蚀 转速低,转速越高,电刷和换向器产生的火花越大,这限制了直流电机转速的提高。质量和体积大。希望有所帮助!

6、谁做过新能源汽车用驱动电机控制系统的标定,具体试验流程是怎样的,能给简单介绍一下吗

我做过,但这内容也太多了。这样几句话讲不完。比方最大电流,起步时的电流,堵转电流以及保护时间。在运行中挂错档位如何保护?撞车后的保护短路后的保护涉水过热振动欠压保护能量回收绝缘安全

7、直流电机如何控制小车转弯

一个电动小车整体的运行性能,首先取决于它的电池系统和电机驱动系统。 电动小车的驱动系统一般由控制器、功率变换器及电动机三个主要部分组成。 电动小车的驱动不但要求电机驱动系统 具有高转矩重量比、宽调速范围、高可靠 性,而且电机的转矩-转速特性受电源功 率的影响,这就要求驱动具有尽可能宽 的高效率区。我们所使用的电机一般为 直流电机,主要用到永磁直流电机、伺服 电机及步进电机三种。直流电机的控制 很简单,性能出众,直流电源也容易实 现。主要介绍这种直流电机的驱动及控制。1.H 型桥式驱动电路 直流电机驱动电路使用最广泛的就 是H型全桥式电路,这种驱动电路可以 很方便实现直流电机的四象限运行,分 别对应正转、正转制动、反转、反转制动。 它的基本原理图如图1所示。 全桥式驱动电路的4只开关管都工 作在斩波状态,S1、S2为一组,S3、S4 为另一组,两组的状态互补,一组导通则 另一组必须关断。当S1、S2导通时,S3、 S4关断,电机两端加正向电压,可以实 现电机的正转或反转制动;当S3、S4导 通时,S1、S2关断,电机两端为反向电 压,电机反转或正转制动。在小车动作的过程中,我们要不断 地使电机在四个象限之间切换,即在正 转和反转之间切换,也就是在S1、S2导 通且S3、S4关断,到S1、S2关断且S3、 S4导通,这两种状态之间转换。在这种 情况下,理论上要求两组控制信号完全 互补,但是,由于实际的开关器件都存在 开通和关断时间,绝对的互补控制逻辑 必然导致上下桥臂直通短路,比如在上 桥臂关断的过程中,下桥臂导通了。这个过程可用图2说明。因此,为了避免直通 短路且保证各个开关管动作之间的协同 性和同步性,两组控制信号在理论上要 求互为倒相的逻辑关系,而实际上却必须相差一个足够的死区时间,这个矫正过程既可以通过硬件实现,即在上下桥 臂的两组控制信号之间增加延时,也可 以通过软件实现(具体方法参看后文)。 驱动电流不仅可以通过主开关管流通,而且还可以通过续流二极管流通。当电机处于制动状态时,电机便工作在发电状态,转子电流必须通过续流二极管流通,否则电机就会发热,严重时烧毁。 开关管的选择对驱动电路的影响很大,开关管的选择宜遵循以下原则:(1)由于驱动电路是功率输出,要求开关管输出功率较大;(2)开关管的开通 和关断时间应尽可能小;(3)小车使用的电源电压不高,因此开关管的饱和压降应该尽量低。 在实际制作中,我们选用大功率达林顿管TIP122或场效应管IRF530,效果都还不错,为了使电路简化,建议使用集成有桥式电路的电机专用驱动芯片,如L298、LMD18200,性能比较稳定可靠。 由于电机在正常工作时对电源的干扰很大,如果只用一组电源时会影响单片机的正常工作,所以我们选用双电源供电。一组5V给单片机和控制电路供电, 另外一组9V给电机供电。在控制部分和电机驱动部分之间用光耦隔开,以免影响控制部分电源的品质,并在达林顿管的基极加三极管驱动,可以给达林顿管提供足够大的基极电流。图3所示为采用TIP122的驱动电机电路,IOB8口为“0”,IOB9口输入PWM波时,电机正转,通过 改变PWM的占空比可以调节电机的速度。而当IOB9口为“0”,IOB8口输入PWM 波时,电机反转,同样通过改变PWM的占空比来调节电机的速度。图4为采用内部集成有两个桥式电 路的专用芯片L298所组成的电机驱动电路。驱动芯片L298是驱动二相和四相步进电机的专用芯片,我们利用它内部的 桥式电路来驱动直流电机,这种方法有一系列的优点。每一组PWM波用来控制一个电机的速度,而另外两个I/O口可以控制电机的正反转,控制比较简单,电路也很简单,一个芯片内包含有8个功率管,这样简化了电路的复杂性,如图所示IOB10、IOB11控制第一个电机的方向,IOB8输入的PWM控制第一个电机的速度;IOB12、IOB13控制第二个电机的方向,IOB9输入的PWM控制第二个电机的速度。LMD18200是美国国家半导体公司推出的专用于直流电动机驱动的H桥组件,同一芯片上集成有CMOS控制电路和DMOS功率器件。此种芯片瞬间驱动电流可达6A,正常工作电流可达3A,具有很强的驱动能力,无“shot-through”电流,而且此种芯片内部还具有过流保护的测量电路,只需要在LMD18200的8脚输出端测出电压和给定的电压比较即可保护电路过流,从而实现电路的过流保护功能。由LMD18200组成的电机驱动电路如图5所示。LMD18200的5脚为PWM 波输入端,通过改变PWM的占空比就可调节电机的速度,改变3脚的高低电平即可控制电机的正反转。此电路和以上几种驱动电路比较具有明显的优点,驱动功率大,稳定性好,实现方便,安全可靠。2 .P W M 控制 PWM(脉冲宽度调制)控制,通常 配合桥式驱动电路实现直流电机调速, 非常简单,且调速范围大,它的原理就 是直流斩波原理。如图1所示,若S3、S4 关断,S1、S2受PWM控制,假设高电平 导通,忽略开关管损耗,则在一个周期 内的导通时间为t,周期为T,波形如图 6,则电机两端的平均电压为: U=Vcc t/ T=αVcc ,其中,α=t/T称为占空比,Vcc为电源电压(电源电压减去两个开关 管的饱和压降)。电机的转速与电机两端的电压成比例,而电机两端的电压与控制波形的占空比成正比,因此电机的速度与占空比成比例,占空比越大,电机转得越快,当占空比α=1时,电机转速最大。 PWM控制波形的实现可以通过模拟 电路或数字电路实现,例如用555搭成的触发电路,但是,这种电路的占空比不能自动调节,不能用于自动控制小车的调 速。而目前使用的大多数单片机都可以直接输出这种PWM波形,或通过时序模拟输出,最适合小车的调速。我们使用的是凌阳公司的SPCE061单片机,它是16位单片机,频率最高达到49MHz,可提供2路PWM 直接输出,频率可调,占空比16级可调,控制电机的调速范围大,使用方便。SPCE061单片机有32个I/O口, 内部设有2个独立的计数器,完全可以模拟任意频率、占空比随意调节的PWM信号输出,用以控制电机调速。 在实际制作过程中,我们认为控制信号的频率不需要太高,一般在400Hz以下为宜,占空比16级调节也完全可以满足调速要求,并且在小车行进的过程中,占空比不应该太高,在直线前进和转弯 的时候应该区别对待。若车速太快,则在 转弯的时候,方向不易控制;而车速太慢,则很浪费时间。这时图6可以根据具体情况慢慢调节。在2003年“简易智能电动车”的实际制作中,我们的小车驱动信号的占空比一般在8/16以下。3.通过软件避免直通短路 从前面的分析可知,桥式驱动电路中,由于开关管有开通和关断时间,因此存在上下桥臂直通短路的问题。直通短路的存在,容易使开关管发热,严重时烧毁开关管,同时也增加了开关管的能量损耗,浪费了小车宝贵的能量。由于现在的许多集成驱动芯片内部已经内置了死区保护(如LMD18200),这里主要介绍的是利用开关管等分立元件以及没有死区保护的集成芯片制作驱动电路时增加死区的方法。 死区时间的问题,只有在正转变为反转的时候才存在,而在正转启动或反转启动的时候并没有,因此不需要修正。如果开关管的开通和关断时间非常小,或者在硬件电路中增加延时环节,都可以降低开关管的损耗和发热。当然,通过软件避免直通短路是最好的办法,它的操作简单,控制灵活。通过软件实现死区时间,就是在突然换向的时候,插入一个延时的环节,待开关管关断之后,再开通应该开通的开关管。图7为利用软件修正死区时间的流程图,在开关管每次换向的时候,不立即进行方向的切换,而是先使开关管关断一段时间,使其完全关断后再换向打开另外的开关管。这个关断时间由单片机软件延时实现。这是直流电机调速使用最多的调速方法。目前市场上有很多种电机驱动的集成电路,效率高,电路简单,使用也比较广泛,但是其驱动方法大多与全桥式驱动一样。PWM控制方法配合桥式驱动电路,是目前直流电机调速最普遍的方法。

8、电动汽车电机转速与电动车速的关系?

电动汽车的电机转速就是车速成固定正比的。电机转的越快车速越高。

1、市面上大多数的电动汽车都是变频无刷电机+单速变速箱。例如特斯拉Tesla Model S、比亚迪E3、秦等。单速变速箱就决定了,电机转速越高,车速越快了。

2、因为电动机在任何转速下都能拥有很大的扭力,控制器从电池获取电能,产生不同的频率的电能给电机,不同的频率就是不同的转速。

在不同的频率下电流也是不一样的,低转速时电流大,也可能很迅猛起步。再通过检测电机的转速,调整不同的频率和电流,就可以加速了。也是因为电机低速扭力大的特性,所以电动汽车的0速加速很快。

3、燃油发动机在一定的转速下才能获得较大的扭力的,所以要使用多速的变速箱,不同的档位齿比不一样。所以燃油发动机的转速和车速不是固定的比例的。

4、当然电机搭配多速变速箱能提供更高的转矩和速度,增加续航,但是这样的变速箱基本上是概念的级别。

所以目前的电动汽车都是电机转速越高,车速越快。

(8)电动汽车直流斩波调速扩展资料:

电动机调速控制装置是为电动汽车的变速和方向变换等设置的,其作用是控制电动机的电压或电流,完成电动机的驱动转矩和旋转方向的控制。

早期的电动汽车上,直流电动机的调速采用串接电阻或改变电动机磁场线圈的匝数来实现。因其调速是有级的,且会产生附加的能量消耗或使用电动机的结构复杂,现已很少采用。

应用较广泛的是晶闸管斩波调速,通过均匀地改变电动机的端电压,控制电动机的电流,来实现电动机的无级调速。在电子电力技术的不断发展中,它也逐渐被其他电力晶体管(如GTO、MOSFET、BTR及IGBT等)斩波调速装置所取代。

伴随着新型驱动电机的应用,电动汽车的调速控制转变为直流逆变技术的应用,成为必然的趋势。

在驱动电动机的旋向变换控制中,直流电动机依靠接触器改变电枢或磁场的电流方向,实现电动机的旋向变换,这使得电路复杂、可靠性降低。

当采用交流异步电动机驱动时,电动机转向的改变只需变换磁场三相电流的相序即可,可使控制电路简化。此外,采用交流电动机及其变频调速控制技术,使电动汽车的制动能量回收控制更加方便,控制电路更加简单。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3