4曲柄滑块、导杆、凸轮运动学分析实验

您所在的位置:网站首页 直动滑杆机构工作原理视频 4曲柄滑块、导杆、凸轮运动学分析实验

4曲柄滑块、导杆、凸轮运动学分析实验

2024-07-14 10:09| 来源: 网络整理| 查看: 265

曲柄滑块、导杆、凸轮运动学分析实验

一、实验目的

1、通过实验,了解位移、速度、加速度的测定方法;转速及回转不匀率的测定方法;

2、通过实验,初步了解“QID-III 型组合机构实验台”及光电脉冲编码器、同步脉冲发生器(或称角度传感器)的基本原理,并掌握它们的使用方法;

3、通过比较理论运动曲线与实测运动曲线的差异,并分析其原因,增加对运动速度特别是加速

度的感性认识;

4、比较曲柄滑块机构与曲柄导杆机构的性能差别;

5、检测凸轮直动从动杆的运动规律;

6、比较不同凸轮廓线或接触副,对凸轮直动从动杆运动规律的影响。

二、实验设备及工具

1、QID-III 型组合机构实验台(如图1所示);

2、活动扳手,固定扳手,内六角扳手,螺丝刀;

3、钢直尺,游标卡尺。

三、QTD-III 型组合实验系统的组成及工作原理

1、实验系统组成

图2 实验系统框图

本实验的实验系统框图如图2所示,它由以下设备组成: (1)实验机构—曲柄滑块、导杆、凸轮组合机构 (2)光电脉冲编码器

(3)同步脉冲发生器(或称角度传感器)

(4)QTD-III 型组合机构实验仪(单片机检测系统) (5)个人电脑 (6)打印机

2、实验机构主要技术参数

(1)直流电机额定功率 100W

(2)电机调速范围 0-2000r/min

图1 QTD-III 型组合机构实验台照片

(3)蜗轮减速箱速比1/20

(4)实验台尺寸长×宽×高= 500×380×230

(5)电源220V/50Hz

3、实验机构结构特点

该组合实验装置,只需拆装少量零部件,即可分别构成四种典型的传动系统,它们分别是曲柄滑块机构;曲柄导杆滑块机构;平底直动从动杆凸轮机构和滚子直动从动杆凸轮机构,如图3所示。而每一种机构的某一些参数,如曲柄长度、连杆长度、滚子偏心等都可在一定范围内作一些调整,通过拆装及调整可加深实验者对机械结构本身特点的了解,对某些参数改动对整个运动状态的影响也会有更好的认识。

(a)曲柄滑块机构

(b)曲柄导杆机构

(c)平底直动从动杆凸轮机构

(d)滚子直动从动杆凸轮机构

图3 四种机构类型

1、同步脉冲发生器

2、涡轮减速器

3、曲柄

4、连杆

5、电机

6、滑块

7、齿轮

8、

光电编码器9、导块10、导杆11、凸轮12、平底直动从动件13、回复弹簧14、滚子

直动从动件15、光栅盘

4、组合机构实验仪

(1)实验仪外型布置

此实验仪的外型结构如图4所示,图4(a)为正面结构,图4(b)为背面结构。

图4(a)QTD-III实验仪正面结构

图4(b)QTD-III实验仪正面结构

(2)实验仪系统原理

以QTD-III型组合机构实验仪为主体的整个测试系统的原理框图如图5所示。

图5 测试系统的原理框图

本实验仪由单片机最小系统组成。外扩16 位计数器,接有 3 位LED 数码显示器可实时显示机构运动时曲柄轴的转速,同时可与P C 机进行异步串行通讯。

在实验机构动态运动过程中,滑块的往复移动通过光电脉冲编码器转换输出具有一定频率(频率与滑块往复速度成正比),0-5伏电平的两路脉冲,接入微处理器外扩的计数器计数,通过微处理器进行初步处理运算并送入P C 机进行处理,P C 机通过软件系统在CRT 上可显示出相应的数据和运动曲线图。

机构中还有两路信号送入单片机最小系统,那就是角度传感器(同步脉冲发生器)送出

的两路脉冲信号。其中一路是光栅盘每20。一个角度脉冲,用于定角度采样,获取机构运动线图;另一路是零位脉冲,用于标定采样数据时的零点位置。

机构的速度、加速度数值由位移经数值微分和数字滤波得到。与传统的R-C电路测量法或分别采用位移、速度、加速度测量仪器的系统相比,具有测试系统简单,性能稳定可靠、附加相位差小、动态响应好等特点。

本实验仪测试结果不但可以以曲线形式输出,还可以直接打印出各点数值,克服了以往测试方法中,须对记录曲线进行人工标定和数据处理而带来较大的幅值误差和相位误差等问题。

本实验仪最大优点就是采用微处理器和相应的外围设备,因此在数据处理的灵活性和结果显示、记录、打印的便利、清晰、直观等方面明显优于传统的同类仪器。另外,与个人电脑连接使用,操作上只要使用键盘和鼠标就可完成,操作灵活方便,实验准备工作非常简单,在学生进行实验时稍作讲解即可使用。

5、光电脉冲编码器结构原理及标定值计算方法

(1)光电脉冲编码器结构原理

光电脉冲编码器如图6所示。

1、发光体

2、聚光镜

3、光电盘

4、光栏板

5、光敏管

6、主轴

图6 光电脉冲编码器结构原理图

光电脉冲编码器又称增量式光电编码器,它是采用圆光栅通过光电转换将轴转角位移转换成电脉冲信号的器件。它由发光体、聚光透镜、光电盘、光栏板、光敏管和光电整形放大电路组成。光电盘和光栏板用玻璃材料经研磨、抛光制成的。在光电盘上用照相腐蚀法制成有一组径向光栅,而光栏板上有两组透光条纹,每组透光条纹后都装有一个光敏管,它们与光电盘透光条纹的重合性差1/4 周期。光源发出的光线经聚光镜聚光后,发出平行光。当主轴带动光电盘一起转动时,光敏管就接收到光线亮、暗变化的信号,引起光敏管所通过的电流发生变化,输出两路相位差90。的近似正弦波信号,它们经放大、整形后得到两路相差90。的主波 d 和d'。d 路信号经微分后加到两个与非门输入端作为触发信号;d' 路经反相器反相后得到两个相位相反的方波信号,分送到与非门剩下的两个输入端作为门控信号,与非门的输出端即为光电脉冲编码器的输出信号端,可与双时钟可逆计数的加、减触发端相接。当编码器转向为正时(如顺时针),微分器取出 d 的前沿A,与非门1打开,输出一负脉冲,计数器作加计数;当转向为负时,微分器取出 d 的加一前沿B,与非门1打开,输出一负脉冲,计数器作减计数。某一时刻计数器的计数值,即表示该时刻光电盘(即主轴)相对于光敏管位置的角位移量。(如图7和图8所示)

图7 光电脉冲编码器电路原理框图

图8 光电脉冲编码器电路各点信号波形图

(2)标定值计算方法

在本实验机构中,标定值即是指光电脉冲编码器每输出一个脉冲所对应滑块的位移量(mm)。也称作光电编码器的脉冲当量,它是按以下公式计算出来的。

脉冲当量计算式:

M = πφ/N = 0.05026mm/脉冲(取为0.05)

式中:M —脉冲当量

φ—齿轮分度圆直径(现配齿轮=16mm)

N—光电脉冲编码器每周脉冲数(现配编码器N =1000)

四、软件界面介绍及操作说明

1、软件界面介绍

整个窗体由标题栏、菜单栏、工具栏、数据显示区、运动曲线绘制和采样参数设定区、本公司广告信息显示区、运动分析结果显示区、状态栏等八部分组成。

(1)菜单栏

各菜单功能的简要说明:

■打开打开以前保存在数据库内的采集所得数据(位移、速度、加速度数据)

■保存保存当前的采集所得数据(位移、速度、加速度数据)

■退出程序的退出操作

■端口1 采集前的端口1的选择(地址3F8H(十六进制))

■端口2 采集前的端口2的选择(地址2F8H(十六进制))

■数据分析对当前采集到的位移数据进行分析,得出运动的速度、加速度曲线及有关参数。

■动画显示

■曲柄滑块机构用软件编写曲柄滑块的运动动画窗口。

■曲柄导杆机构用软件编写曲柄导杆的运动动画窗口。

■打印弹出打印窗口,可进行如下选择。

■数据打印可打印采集到的所有位移数据及相应的速度加速度数据,也可打印部分数据,即只打印由用户自己所选的采样点数的位移数据及相应的速度加速度数据。

■曲线打印同数据打印一样,可打印全部曲线和部分曲线。打印回转不匀率曲线,当进行回转不匀率的采样操作时可选此项。

■帮助主题曲柄滑块/导杆机构运动参数测试仪的详细介绍。

(2)工具条

a、打开按钮,同打开菜单操作。

b、保存按钮,同保存菜单操作。

c、数据分析按钮,同数据分析菜单的操作。

d、曲柄导杆机构的动画显示按钮。

e、打印按钮,同打印菜单。

f、显示帮助主题按钮

(3)数据显示区

显示采集所得和分析所得的全部数据,以便使用者查看之用。

当“采集”按键作用后(采集完成)在此区显示采集点数和运动位移值。

当“数据分析”按键作用后,在此区内将加入分析所得的速度和加速度数据。

(4)运动曲线绘制和采样参数设定区

程序刚打开时此区显示的是运动曲线绘制控件,当选择好串口(“端口选择”

作用后)后此区变为采样参数设定表框。

a、定时采样的采样时间常数选择

b、定角度采样的角度常数选择

c、回转不匀率角度常数选择

采样完成后此区又回到运动曲线绘制控件并绘出采样数据相应的位移曲线,“数据分析”按键作用后,将同时绘出速度曲线和加速度曲线,最终显示在此区的是三条曲线(位移、速度、加速度曲线)。

(5)运动分析结果显示区

此区将显示当前运动采样的位移、速度、加速度的最大值、最小值和平均值,回转不匀率采样所得的转速的最大值、最小值、平均值及回转不匀率值。

(6)状态栏

显示程序运行时的动态信息。如在绘制曲线时,在状态栏中将实时显示当前的位移或速度、加速度值。

2、软件操作说明

首先,在使用前确定所要做的是定时采样还是定角采样方式,或是要进行测定机构当前的回转不匀率。

其次,启动此曲柄滑块导杆机构,打开测试仪的电源按钮,此时测试仪先显示的是数字0随后便正确显示当前的转速。

接着,调节曲柄滑块导杆机构上的旋钮使转速调到自己所需的转速,待稳定后便可开在PC 上的软件系统上进行操作了,其步骤如下:

(1)打开本软件系统。

(2)选择端口号。(如选择端口1)

(3)在采样参数设计区选择采样方式和采样常数。并在“标定值输入框”中输入标定值0.05。(4)按“采样”键。

(5)等待一段时间。(这段时间用于单片机处理数据以及单片机向PC 机传输数据。)(6)如果采集数据传送(PC与单片机通讯)正确,单片机传送到PC 机的位移数据便会显示在“数据显示区”内,同时PC 机会根据位移数据在“运动曲线绘制区”画出位移的曲线图,同时在“运动分析结果显示区”显示出位移的最大值、最小值、平均值。如果出现

异常,请重新采集数据。

(7)按“数据分析”键。则在“运动曲线绘制区”内将动态的绘出相应的速度曲线和加速度曲线,同时在“运动分析结果显示区”显示出速度、加速度的最大值、最小值、平均值。

(8)保存当前采集的数据到数据库内。

(9)打印当前采集和分析的数据和曲线。

最后,实验总结。

注:若在第3 步中选择的是进行角度分析(即回转不匀率的采样方式)时,将跳过7、8 两步。

五、实验内容和步骤

(一)、系统联接及启动

1、连接RS232通讯线

本实验必须通过计算机来完成。将计算机Rs232 串行口,通过标准的通讯线,连接到QTD-Ⅲ型组合机构实验仪背面的Rs232 接口。

2、启动机械教学综合实验系统

图9 机械教学综合实验系统主界面

图10 运动学机构实验系统初始界面

图11 运动学机构实验台主窗体

在图9主界面右上角串口选择框中选择相应串口号(COM1或COM2),本实验选择缺省的COM1即可。在主界面左边的实验项目框中点击“运动学”键,主界面显示如图10所示。点击图10中央的图片,弹出如图11所示的运动学机构实验台主窗体界面。在图11界面中点击“串口选择”菜单,正确选择串口号(COM1或COM2),本实验选择COM1。点击“数据采集”菜单,等待数据输入。

(二)、组合机构实验操作

1、曲柄滑块运动机构实验

按图2(a) 将机构组装为曲柄滑块机构。

a 、滑块位移、速度、加速度测量

(1) 将光电脉冲编码器输出的5芯插头及同步脉冲发生器输出的5 芯插头分别插入QTD-III 组合机构实验仪上相对应接口上。

(2) 打开实验仪上的电源,此时带有LED数码管显示的面板上将显示"0"。

(3) 起动机构,在机构电源接通前应将电机调速电位器逆时针旋转至最低速位置,然后接通电源,并顺时针转动调速电位器,使转速逐渐加至所需的值(否则易烧断保险丝,甚至损坏调速器),显示面板上实时显示曲柄轴的转速。

(4) 机构运转正常后,就可在计算机上进行操作了。

(5) 请先熟悉系统软件的界面及各项操作的功能。(请参阅操作系统软件简介)

(6) 在界面右侧的采样参数选择区内选择相应的采样方式和采样常数。你可以选择定时采样方式,采样的时间常数有10个选择档(分别是:2ms、5ms、10ms、15ms、20ms、25ms、30ms、35ms、40ms、50ms),例如选采样周期25ms;你也可以选择定角采样方式,采样的角度常数有5个选择档(分别是:2度、4度、6度、8度、10度),例如选择每隔 4 度采样一次。

(7) 在“标定值输入框”中输入标定值0.05 (标定值计算方法见附录)。

(8) 按下“采集”按键,开始采样。(请等若干时间,此时实验仪正在进行对机构运动的采样,并回送采集的数据给PC机,PC机对收到的数据进行一定的处理,得到运动的位移值)(9) 当采样完成后,在界面将出现“运动曲线绘制区”,绘制当前的位移曲线,且在左边的“数据显示区”内显示采样的数据。

(10) 按下“数据分析”菜单。则“运动曲线绘制区”将在位移曲线上再逐渐绘出相应的速度和加速度曲线。同时在左边的“数据显示区”内也将增加各采样点的速度和加速度值。(11) 点击“打印”菜单,打开打印窗口,打印数据和运动曲线。打印时保存为*.mdi格式即

可。

b、转速及回转不匀率的测试

(1) 同“滑块位移、速度、加速度测量”的(1) 至(5) 步。

(2) 点击“数据采集”菜单,在界面右侧的采样参数选择区内,你应该选择最右边的一栏,角度常数选择有5档(2度、4度、6度、8度、10度),选择一个你想要的一档,例如选择6度。

(3) 同“滑块位移、速度、加速度测量”的(7)、(8)、(9) 步,不同的是“数据显示区”不显示相应的数据。

(4) 打印。同样地,打印时保存为*.mdi格式。

2、曲柄导杆滑块运动机构实验

按图2(b)组装实验机构,按上述1.a 、1.b步骤操作,比较曲柄滑块机构与曲柄导杆滑块机构运动参数的差异。

3、平底直动从动杆凸轮机构实验

按图2(c) 组装实验机构,按上述1.a 操作步骤,检测其从动杆的运动规律。

注:曲柄转速应控制在每分40转以下。

4、滚子直动从动杆凸轮机构实验

按图2(d)组装实验机构,按上述 1.a 操作步骤,检测其从动杆的运动规律,比较平底接触与滚子接触运动特性的差异。

调节滚子的偏心量,分析偏心位移变化对从动杆运动的影响。

注:曲柄转速应控制在每分40转以下。

(三)、理论曲线的获取

点击图11中的“动画显示”菜单,在下拉菜单中选择任一种机构,如“曲柄导杆机构”,在弹出的界面中输入实测的实验机构参数,在这里为“曲柄长”、“连杆长”、“曲柄转速”,点击“标准计算结果”,则能够获得实验机构的理论曲线,如图12所示。

图12 理论曲线的获取

六、实验结果示例

图13为实验机构的实验结果。

(a ) (b )

图13 实验结果示例

七、思考题

1、 分析曲柄滑块机构机架长度及滑块偏置尺寸运动参数的影响。

2、 已知曲柄长度为57mm 连杆长度47mm ,滑块偏矩20mm ,利用计算机求出相应 的运动参数,给出运动线图和实测曲线相比较,并分析产生差异的原因。

3、 对于曲柄滑块机构判断机构是否有急回特性。

4、 计算行程速比系数,判断加速度峰值发生在什么地方?

深圳大学实验报告

课程名称:机械原理

实验名称:曲柄滑块、导杆、凸轮运动学分析实验

学院:机电与控制工程学院

专业:机械设计制造及其自动化

指导教师:

报告人:学号:第组班级:实验时间:

实验报告提交时间:

教务处制

一、实验目的

二、实验设备及工具

三、实验机构及测试原理图

注:请从上述6种实验机构中任选一种机构进行实验。

2、测试原理图

四、实验内容和步骤

五、数据处理分析

六、思考与讨论

七、实验心得体会

插床导杆机构课程设计

大学普通高等教育 机械原理课程设计 题目题号:插床导杆机构位置3的设计 学院:机电工程学院 专业班级: 学生: 指导教师 成绩: 2013 年7月 2 日

目录 一、工作原理 二、设计要求 三、设计数据 四、设计容及工作量五. 设计计算过程 (一). 方案比较与选择 (二). 导杆机构分析与设计 1.机构的尺寸综合 2. 导杆机构的运动分析

一、工作原理: 插床机械系统的执行机构主要是由导杆机构和凸轮机构组成。下图为其参考示意图,电动机经过减速传动装置(皮带和齿轮传动)带动曲柄2转动,再通过导杆机构使装有刀具的滑块6沿导路y —y 作往复运动,以实现刀具的切削运动。刀具向下运动时切削,在切削行程H 中,前后各有一段0.05H 的空刀距离,工作阻力F 为常数;刀具向上运动时为空回行程,无阻力。为了缩短回程时间,提高生产率,要求刀具具有急回运动。刀具与工作台之间的进给运动,是由固结于轴O 2上的凸轮驱动摆动从动件D O l 8和其它有关机构(图中未画出)来完成的。 二、设计要求: 电动机轴与曲柄轴2平行,使用寿命10年,每日一班制工作,载荷有轻微冲击。允许曲柄2转速偏差为±5%。要求导杆机构的最小传动角不得小于60o ;凸轮机构的最大压力角应在许用值[α]之,摆动从动件8的升、回程运动规律均为等速运动。执行构件的传动效率按0.95计算,系统有过载保护。按小批量生产规模设计。

三、插床导杆机构设计数据 四、设计容及工作量: 1、根据插床机械的工作原理,拟定2~3个其他形式的执行机构(连杆机构),并对这些机构进行分析对比。 2、根据给定的数据确定机构的运动尺寸, ()46.0~5.0BO BC l l =。要求用图解法设计,并将 设计结果和步骤写在设计说明书中。 3、导杆机构的运动分析。分析导杆摆到两个极限位置及摆到与机架O 2O 4位于同一直线位置时,滑块6的速度和加速度。 4、凸轮机构设计。根据所给定的已知参数,确定凸轮机构的基本尺寸(基圆半径r o 、机架82O O l 和滚子半径r b ),并将运算结果写在说明书中。用几何法画出凸轮机构的实际廓线。 5、编写设计说明书一份。应包括设计任务、设计参数、设计计算过程等。 6、按1:2绘制所设计的机构运动简图。

平衡吊的动力学与运动学仿真

平衡吊的运动学与动力学仿真 作者:** 指导老师:** ********** *************** 1 绪论 1.1 平衡吊的概要平衡吊是的主要结构是平行四边形连杆机构的放大形态和螺母升降结构,通过外力的作用下达到重物的上升和下降的目的,平衡吊可以满足重物随时停留在需要的工作区域。比其他的吊装设备更具有优越性,它比一般吊装设备更加的灵活,从而更加的精准,与机械手相比等其他吊装设备比,其结构更加得合理,性能较好,广泛的使用于重工业的生产中,在机床厂中更是被用作吊装作业,在小型企业装卸货物,例如码头的施工,集装箱的搬运,非常适合于作业区域窄,时间间隔短的作业方式。其极大减少了人力使用,有效地节约了人力资源。平衡吊在市场上主要常见的有3 种,机械式,气动式,液压式,机械式,顾名思义,通过外力的使用,使其达到升降的目的,主要在生产,搬运的的领域中常见,后期,更是添加了电动装置,优化了他的配置,有效地提高了生产效率。气动式平衡吊主要是对于气压的控制原理实现升降功能的我们成为气动式平衡吊,液压式,主要是根据液压系统来设置的,在大多数重工业生产地使用广泛。现在主要使用的为气动式平衡吊,主要省力,都是自动化进行的,按照平衡吊臂的类型还可以将平衡吊分为通用和专用类型,他们各有各的特色,相对于大型的吊车来说,其缺点是工作的行程围较小,区域局限化。 平衡吊的种类及其特点:液压平衡吊的特点:液压平衡吊有3 大类,有级,单级,无级变速的,他们通过不同的油路控制来达到不同的工作地点; 气动平衡吊的特点:体积不大,比一般的平衡吊具有灵活的特色;电动平衡吊:又称为机械式平衡吊,具有控制重物在任意指定地点的特点,一般为定速转动; Cad(2D)+solidworks(3D) 图纸整套免费获取,需要的 加QQ1162401387 1.2 平衡吊的结构 平衡吊主要有大小臂,起重臂,短臂,电机,立柱,丝杆螺母传动副构成的,其中的几个臂件通过平行四边形连杆机构构成的。在外力的作用下起到升降重物的作用。

机构运动仿真基本知识

机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。我再发一份学习笔记,并整理一下,当个基础教程吧。希望能对学习 仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义:主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动 的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺 省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体 的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。

凸轮机构的运动学仿真实验_02

机构与零部件设计(Ⅰ)实验报告姓名 凸轮机构运动学仿真班号 成绩 凸轮机构的运动学仿真 一、实验目的: 1.理解凸轮轮廓线与从动件运动之间的相互关系,巩固凸轮机构设计及运动分析的理论知识。 2.用虚拟样机技术模拟仿真凸轮机构的设计。 二、实验内容: 1.凸轮轮廓线的构建; 2.凸轮机构的三维建模; 3.凸轮机构的运动学仿真。 具体要求:设计对心直动滚子从动件凸轮机构 已知从动件的运动规律为:当凸轮转过Φ=600时,从动件以等加速等减速运动规律上升h=10mm;凸轮再转过Φ'=1200,从动件停止不动;当凸轮再转过Φ=600时,从动件以等加速等减速运动规律下降h=10mm;其余Φs'=1200,从动件静止不动。 已知基圆r b=50mm,滚子半径r=10mm,凸轮厚度10mm。凸轮以等角速度顺时针转动,试设计凸轮机构,并输出从动件运动规律。 实验步骤:

三、实验报告: 将所建立的凸轮廓线、凸轮机构的三维模型、凸轮机构的从运件运动规律附在实验报告中。 机构与零部件设计(Ⅰ)实验报告 凸轮机构运动学仿真

对设计结果进行分析 思考题: 1.在构建凸轮轮廓线的曲线应注意哪些事项?在建立凸轮机构的三维建模时又应注意哪些事项? 建凸轮轮廓曲线时首先该凸轮轮廓曲线分为四段推程阶段(等加速、等减速)、远休止阶段、回程阶段、近休止阶段。建立表达式时较复杂,例如要将上诉规律分为六小段,即b1=30,b2=60,b3=180,b4=210,b5=240,b6=360且a1=0,a2=b1,a3=b2,a4=b3,a5=b4,a6=b5(单位皆为度)。 另知 在最后插入曲线时要将输入的x1、y1等相互对应,且将Z 值变为0. 还要根据设计任务的要求选择凸轮的类型和从动件运动规律 确定凸轮的基圆半径,确定凸轮的轮廓 在建立三维模型,表达式的建立时,要注意参数化曲线的建立以及连杆,运动副的定义,特别注意高副的定义。 2.凸轮轮廓线与从动件运动规律之间有什么内在联系? 答:凸轮轮廓曲线由从动件的运动规律来决定,要根据从动件的运动规律来设计凸轮轮廓的曲线。 ? ?cos )(sin )(s r y s r x b B b B +=+=

iNVENTOR 运动仿真分析

第1章运动仿真 本章重点 应力分析的一般步骤 边界条件的创建 查看分析结果 报告的生成和分析 本章典型效果图 1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer 中“机构”模块是专门用来进行运动仿真和动态分析的模块。 PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定

可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。 使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。 如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图

曲柄连杆机构运动学仿真

课程设计任务书

目录 1 绪论 (1) 1.1CATIA V5软件介绍 (1) 1.2ADAMS软件介绍 (1) 1.3S IM D ESIGNER软件介绍 (2) 1.4本次课程设计的主要内容及目的 (2) 2 曲柄连杆机构的建模 (3) 2.1活塞的建模 (3) 2.2活塞销的建模 (5) 2.3连杆的建模 (5) 2.4曲轴的建模 (6) 2.5汽缸体的建模 (8) 3 曲柄连杆机构的装配 (10) 3.1将各部件导入CATIA装配模块并利用约束命令确定位置关系 (10) 4 曲柄连杆机构导入ADAMS (14) 4.1曲柄连杆机构各个零部件之间运动副分析 (14) 4.2曲柄连杆机构各个零部件之间运动副建立 (14) 4.3曲柄连杆机构导入ADAMS (16) 5 曲柄连杆机构的运动学分析 (17) 结束语 (21) 参考文献 (22)

1 绪论 1.1 CATIA V5软件介绍 CATIA V5(Computer-graphics Aided Three-dimensional Interactive Application)是法国Dassault公司于1975年开发的一套完整的3D CAD/CAM/CAE一体化软件。它的内容涵盖了产品概念设计、工业设计、三维建模、分析计算、动态模拟与仿真、工程图的生成、生产加工成产品的全过程,其中还包括了大量的电缆和管道布线、各种模具设计与分析、人机交换等实用模块。CATIA V5不但能保证企业内部设计部门之间的协同设计功能而且还可以提供企业整个集成的设计流程和端对端的解决方案。CATIA V5大量应用于航空航天、汽车及摩托车行业、机械、电子、家电与3C产业、NC加工等领域。 由于其功能的强大而完美,CATIA V5已经成为三维CAD/CAM领域的一面旗帜和争相遵从的标准,特别是在航空航天、汽车及摩托车领域。法国的幻影2000系列战斗机就是使用CATIA V5进行设计的一个典范;波音777客机则使用CATIA V5实现了无图纸设计。另外,CATIA V5还用于制造米其林轮胎、伊莱克斯电冰箱和洗衣机、3M公司的粘合剂等。CATIA V5不仅给用户提供了详细的解决方案,而且具有先进的开发性、集成性及灵活性。 CATIA V5的主要功能有:三维几何图形设计、二维工程蓝图绘制、复杂空间曲面设计与验证、三维计算机辅助加工制造、加工轨迹模拟、机构设计及运动分析、标准零件管理。 1.2 ADAMS软件介绍 ADAMS即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS己经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额。 ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、

运动仿真技术经验

精心整理 一SW 运动仿真 1.简介 二十世纪八十年代以来,设计工程中首次使用计算机辅助工程(CAE )方法后,有限元分析(FEA )就成了最先被广泛采用的模拟工具。多年来,该工具帮助设计者在研究新产品的结构性能时节约了大量时间。 由于机械产品日渐复杂,不断加剧的竞争加快了新设计方案投入市场的速度。设计者迫切感到必须使模拟超出FEA 的局限范围,除使用FEA 模拟结构性能外,还需要在构建物理原型之前确定新产品的运动学和动力学性能。 用。 2.装配当几何体发生改变时,可在几秒内更新所有结果。图4为急回机构中滑杆和驱动连杆之间的干涉。 图4急回机构中滑杆和驱动连杆之间的干涉 运动模拟可在短时间内对任何复杂程度的机构进行分析,可能包含刚性连接装置、弹簧、阻尼器和接触面组。如雪地车前悬架、健身器、CD 驱动器等的运动。 图5复杂机构的运动仿真 除机构分析外,设计者还可通过将运动轨迹转换成CAD 几何体,将运动模拟用于机构合成。例如,设计一个沿着导轨移动滑杆的凸轮,用运动仿真生成该凸轮的轮廓。首先将所需滑杆位置表达为时间和滑杆在旋转凸轮上移动轨迹的函数,然后将轨迹路径转换为CAD 几何体,以创建凸轮轮廓。 图6滑杆沿导轨移动的位移函数

图7滑杆沿旋转盘移动绘制的凸轮轮廓 设计者还可将运动轨迹用于很多用途,例如,验证工业机器人的运动、测试工具路径以获取选择机器人大小所需的信息,以及确定功率要求。 图8工业机器人在多个位置之间的移动 运动模拟的另外一项重要应用是模拟零部件之间的碰撞和接触,以研究零部件之间可能形成的缝隙,得出机构的精确结果。例如,通过模拟碰撞和接触,可以研究阀提升机构中凸轮和曲线仪(摇杆)之间可能形成的缝隙。 3.将运动仿真与FEA结合 想了解运动仿真和FEA在机构仿真中如何结合使用,首先要了解每种方法的基本假设。 FEA是一种用于结构分析的数字技术,已成为研究结构的主导CAE方法。它可以分析任何固定支撑的弹性物体的行为,此处弹性是指物体可变性。如图8所示托架,在静态载荷作用下会变形, 形。FEA FEA (1 点反作用力和惯性力。在此步骤中,所有机构连接装置均视为刚性实体。图13中的曲线为曲柄转动一周连杆上接点的反作用力。 图13曲柄转动一周连杆上接点的反作用力 (2).找出与连杆接点上最大反作用力相对应的机构位置。因为施加最大载荷情况下进行的分析将得到连杆所承受的最大应力。如有必要,可选择多个位置进行分析。 图14与连杆上最大反作用力相对应的位置 (3).将这些反作用力载荷以及惯性载荷从CAD装配体传输到连杆CAD零件模型。 (4).作用于从装配体分离出来的连杆上的载荷包括接点反作用力和惯性力,如图15所示。

运动学知识点及例题(详细)

第一章 运动的描述 匀变速直线运动 专题一:运动的描述 1.质点 (1)定义:在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。(把物体看作有质量的点) (2)物体看做质点的条件: 1)物体中各点的运动情况完全相同(物体做平动) 2)物体的大小(线度)<<它通过的距离 (3).质点具有相对性,而不具有绝对性。 (4)质点是理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体) 2.参考系 (1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。 (2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。 对参考系应明确以下几点: ①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果可能不同的。 ②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。 ③参考系可以是运动的,也可以是静止的,但被选作参考系的物体,假定它是静止的。通常取地面作为参照系 ④比较两物体运动时,要选同一参考系。 3.位置、位移和路程 (1)位置是空间某个点,在x 轴上对应的是一个点 (2)位移是表示质点位置变化的物理量。是矢量,在x 轴上是有向线段,大小等于物体的初位置到末位置的直线距离,与路径无关。 (3)路程是质点运动轨迹的长度,是标量,其大小与运动路径有关。 一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单向直线运动时,路程等于位移的大小,但不能说位移等于路程,因为一个矢量和一个标量不能比较。图1-1中质点轨迹ACB 的长度是路程,AB 是位移S 。 (4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从O 点起走了50m 路,我们就说不出终了位置在何处。 4、时刻和时间 时刻:指的是某一瞬时.在时间轴上是一个点.对应的是位置、速度、动量、动能等状态量. 时间:是两时刻间的间隔.在时间轴上是线段.对应的是位移、路程、冲量、功等过程量. A B A B C 图1-1

经典机构结构原理与分析

曲柄摇杆机构 曲柄AB为原动件作匀速转动,当它由AB1转到AB2位置时,转角φ1=180°+θ,摇杆由右极限位置C1D摆到左极限位置C2D摆角为ψ,当曲柄从AB2转到AB1时,转角φ2=180°-θ,摇杆由位置C2D返回C1D,其摆角仍为ψ,因为φ1>φ2 ,对应时间t1>t2,因此摇杆从C2D转到C1D较快,即具有急回特性,其中θ为摇杆处于两极限位置时曲柄两个位置之间所夹的锐角,称为极位夹角。 双摇杆机构 摇杆AB为原动件,通过连杆BC带动从动件CD也作往复摆动,虚线AB1、AB2为摇杆AB的两极限位置,也是当摇杆AB为原动件 时,机构的两死点位置。

双曲柄机构 当曲柄AB为原动件作匀速回转时,曲柄CD跟随作周期性的匀速圆周回转,当曲柄从位置AB1转过φ1角到位置AB2时,从动件CD转过180°,当曲柄从位置AB2转过φ2角到位置AB1时,从动件CD转过180°,因为φ1>φ2 ,即t1>t2,从动曲柄的角速度不是常数,而是作变角速度回转。 平行双曲柄机构 当机构处于AB1C1D和AB2C2D时,机构的传动角γ=0,即为死点位置,若在此位置由于偶然外力的影响,则可能使曲柄转向不定,出现误动作。 当原动件曲柄作匀速回转,从动曲柄也以相同角速度匀速同向回转,连杆作平移运动。

平行机构 该机构为机车驱动轮联动机构,是利用平行曲柄来消除机构死点位置的运动不确定状态的。 搅拌机 该机构是一曲柄摇杆机构的应用实例,利用连杆上E点的轨迹来进行搅拌。

夹具机构 当工件被夹紧后,BCD成一直线,机构处于死点位置,即使工件的反力很大,夹具也不会自动松脱,该例为利用死点位置的自锁特性来实现工作要求的。 K=1的曲柄摇杆机构 从动件摇杆处于两极限位置时,对应主动件曲柄位置AB1、AB2共线,即极位夹角θ=0,K=1,机构没有急回特性。

平衡吊的动力学与运动学仿真

平衡吊得运动学与动力学仿真 作者:** 指导老师:** ********** *************** 1绪论 1、1平衡吊得概要 平衡吊就是得主要结构就是平行四边形连杆机构得放大形态与螺母升降结构,通过外力得作用下达到重物得上升与下降得目得,平衡吊可以满足重物随时停留在需要得工作区域内。比其她得吊装设备更具有优越性,它比一般吊装设备更加得灵活,从而更加得精准,与机械手相比等其她吊装设备比,其结构更加得合理,性能较好,广泛得使用于重工业得生产中,在机床厂中更就是被用作吊装作业,在小型企业装卸货物,例如码头得施工,集装箱得搬运,非常适合于作业区域窄,时间间隔短得作业方式。其极大减少了人力使用,有效地节约了人力资源。 平衡吊在市场上主要常见得有3种,机械式,气动式,液压式,机械式,顾名思义,通过外力得使用,使其达到升降得目得,主要在生产,搬运得得领域中常见,后期,更就是添加了电动装置,优化了她得配置,有效地提高了生产效率。气动式平衡吊主要就是对于气压得控制原理实现升降功能得我们成为气动式平衡吊,液压式,主要就是根据液压系统来设置得,在大多数重工业生产地使用广泛。现在主要使用得为气动式平衡吊,主要省力,都就是自动化进行得,按照平衡吊臂得类型还可以将平衡吊分为通用与专用类型,她们各有各得特色,相对于大型得吊车来说,其缺点就是工作得行程范围较小,区域局限化。 平衡吊得种类及其特点: 液压平衡吊得特点:液压平衡吊有3大类,有级,单级,无级变速得,她们通过不同得油路控制来达到不同得工作地点; 气动平衡吊得特点:体积不大,比一般得平衡吊具有灵活得特色; 电动平衡吊:又称为机械式平衡吊,具有控制重物在任意指定地点得特点,一般为定速转动; Cad(2D)+solidworks(3D)图纸整套免费获取,需要得 加QQ1162401387 1、2平衡吊得结构 平衡吊主要有大小臂,起重臂,短臂,电机,立柱,丝杆螺母传动副构成得,其中得几个臂件通过平行四边形连杆机构构成得。在外力得作用下起到升降重物得作用。

UG运动仿真教程

运动仿真 本章主要内容: z运动仿真的工作界面 z运动模型管理 z连杆特性和运动副 z机构载荷 z运动分析 9.1 运动仿真的工作界面 本章主要介绍UG/CAE模块中运动仿真的功能。运动仿真是UG/CAE(Computer Aided Engineering)模块中的主要部分,它能对任何二维或三维机构进行复杂的运动学分析、动力分析和设计仿真。通过UG/Modeling的功能建立一个三维实体模型,利用UG/Motion的功能给三维实体模型的各个部件赋予一定的运动学特性,再在各个部件之间设立一定的连接关系既可建立一个运动仿真模型。UG/Motion的功能可以对运动机构进行大量的装配分析工作、运动合理性分析工作,诸如干涉检查、轨迹包络等,得到大量运动机构的运动参数。通过对这个运动仿真模型进行运动学或动力学运动分析就可以验证该运动机构设计的合理性,并且可以利用图形输出各个部件的位移、坐标、加速度、速度和力的变化情况,对运动机构进行优化。 运动仿真功能的实现步骤为: 1.建立一个运动分析场景; 2.进行运动模型的构建,包括设置每个零件的连杆特性,设置两个连杆间的运动副和添加机构载荷; 3.进行运动参数的设置,提交运动仿真模型数据,同时进行运动仿真动画的输出和运动过程的控制; 4.运动分析结果的数据输出和表格、变化曲线输出,人为的进行机构运动特性的分析。 9.1.1 打开运动仿真主界面 在进行运动仿真之前,先要打开UG/Motion(运动仿真)的主界面。在UG的主界面中选择菜单命令【Application】→【Motion】,如图9-1所示。

图9-1 打开UG/Motion操作界面 选择该菜单命令后,系统将会自动打开UG/Motion的主界面,同时弹出运动仿真的工具栏。 9.1.2 运动仿真工作界面介绍 点击Application/Motion后UG界面将作一定的变化,系统将会自动的打开UG/Motion 的主界面。该界面分为三个部分:运动仿真工具栏部分、运动场景导航窗口和绘图区,如图9-2所示。 图9-2 UG/Motion 主界面 运动仿真工具栏部分主要是UG/Motion各项功能的快捷按钮,运动场景导航窗口部分主要是显示当前操作下处于工作状态的各个运动场景的信息。运动仿真工具栏区又分为四个模块:连杆特性和运动副模块、载荷模块、运动分析模块以及运动模型管理模块,如图9-3所示。

运动控制系统仿真---实验讲义

《运动控制系统仿真》实验讲义 谢仕宏 [email protected]

实验一、闭环控制系统及直流双闭环调速系统仿真 一、实验学时:6学时 二、实验内容: 1. 已知控制系统框图如图所示: 图1-1 单闭环系统框图 图中,被控对象s e s s G 1501 30010 )(-+= ,Gc(s)为PID 控制器,试整定PID 控制器 参数,并建立控制系统Simulink 仿真模型。再对PID 控制子系统进行封装,要求可通过封装后子系统的参数设置页面对Kp 、Ti 、Td 进行设置。 2. 已知直流电机双闭环调速系统框图如图1-2所示。试设计电流调节器ACR 和转速调节器ASR 并进行Simulink 建模仿真。 图1-2 直流双闭环调速系统框图 三、实验过程: 1、建模过程如下: (1)PID 控制器参数整顿 根据PID 参数的工程整定方法(Z-N 法),如下表所示, Kp=τ K T 2.1=0.24,Ti=τ2=300, Td=τ5.0=75。 表1-1 Z-N 法整定PID 参数

(2)simulink仿真模型建立 建立simulink仿真模型如下图1-3所示,并进行参数设置: 图1-3 PID控制系统Simulink仿真模型 图1-3中,step模块“阶跃时间”改为0,Transport Delay模块的“时间延迟”设置为150,仿真时间改为1000s,如下图1-4所示: 图1-3 PID控制参数设置 运行仿真,得如下结果:

图1-5 PID控制运行结果 (3)PID子系统的创建 首先将参数Gain、Gain1、Gain三个模块的参数进行设置,如下图所示: 图1-6 PID参数设置 然后建立PID控制器子系统,如下图1-7所示: 图1-7 PID子系统 再对PID子系统进行封装,选中“Subsystem”后,单击鼠标右键,选择“Mask subsystem”,弹

高考力学实验运动学试验

力学实验专题复习 实验1、研究匀变速直线运动 1、在做“研究匀变速直线运动”的实验时,某同学得到一条用打点计时器打下的纸带,如图所示,并在其上取了A 、B 、C 、D 、E 、F 、G 等7个计数点,每相邻两个计数点间还有4个点图中没有画出.打点计时器接频率为f=50Hz 的交流电源. (1)每两个相邻的计数点的时间间隔为 s ,打点计时器使用的是 (选填“交流”或“直流”)电源. (2)打下E 点时纸带的速度v E = (用题中给定字母表示); (3)若测得d 6=65.00cm ,d 3=19.00cm ,物体的加速度a= m/s 2; (4)如果当时电网中交变电流的频率f >50Hz ,但当时做实验的同学并不知道,那么测得的加速度值比真实值 (选填“偏大”或“偏小”). 【参考答案】(1)0.1,交流; (2) 53 10 d d - f ; (3)3.0; (4)偏小. 【名师解析】(1)使用打点计时器来分析物体运动情况的实验中,打点计时器使用的是交流电源,若电源频率为50HZ ,则打点计时器打相邻两点的时间间隔是 0.02s . 每相邻两个计数点间还有4个点,图中没有画出,所以相邻的计数点之间的时间间隔为T=5×1/f=0.1s . (2)利用匀变速直线运动的推论得:v E = 532d d T -=53 10 d d -f 。 (3)根据匀变速直线运动的推论公式△x=aT 2可得a=63329d d d T --=2 0.650.190.1990.1 --? m/s 2=3.0m/s 2 ; (4)如果在某次实验中,交流电的频率f >50Hz ,那么实际打点周期变小, 根据运动学公式△x=at 2 得:真实的加速度值就会偏大,所以测量的加速度值与真实的加速度值相比是偏小. 2、如图是某同学在做匀变速直线运动实验中获得的一条纸带 (1)已知打点计时器电源频率为50 Hz ,则纸带上打相邻两点的时间间隔为________; (2)选取ABCD 纸带上四个点,从图中读出A 、B 两点间距s =________ cm ;C 点对应的速度是________ m/s ,匀变速直线运动的加速度为________ m/s 2 (计算结果保留两位有效数字)

3)机器人逆运动学实验

实验(3)机器人逆运动学实验 一、实验目的: 1)基于robotics机器人库构建机器人; 2)对构建的机器人进行逆运动学分析; 3)了解和熟悉机器人逆运动学的作用。 二、机器人连杆关系图: 图1 机器人连杆关系图 连杆变换矩阵: 参数含义:

三、基本函数介绍 (1)2连杆机器人实例 图2连杆机器人坐标系1)建立机器人DH参数表 2)根据D-H参数创建机器人连杆对象

3)根据连杆对象,建立机器人 4)观测建立机器人的情况 正运动学函数: 1)正运动学函数的使用 T=two_link.fkine([pi/4 pi/4]) T = 0.0000 -1.0000 0 0.7071 1.0000 0.0000 0 1.7071 0 0 1.0000 0 0 0 0 1.0000 2)观测计算结果的情况,三维显示 two_link.plot([pi/4 pi/4])

3)逆运动学函数 q=two_link.ikine(T,[0 0],[1 1 0 0 0 0]) q =0.7854 0.7854 ikine 函数的参数说明: Q = R.ikine(T, Q0, M, OPTIONS) Q0为求解的初始值; M 为自由度数,也就是有运动关节,对应有关节的为1。 (2)对于六自由度机器人求解的逆解,以puma560为例。 1)函数ikine6s 使用方法Q = R.ikine6s(T, CONFIG) 其中T 为机器人位姿矩阵。CONFIG 为臂型 'l' arm to the left (default) 'r' arm to the right 'u' elbow up (default) 'd' elbow down 'n' wrist not flipped (default) 'f' wrist flipped (rotated by 180 deg) X Y Z

QJ1E47FMD发动机运动学及动力学仿真计算

QJ147FMD发动机运动学及动力学仿真计算 一、QJ147FMD发动机的参数: 标定转速:6000r/min 曲轴半径:19.6mm 连杆长度:80mm 缸径:47mm 曲柄连杆比:0.245 二、曲柄连杆机构再ADAMS软件中的仿真计算: 上图是燃气的爆发压力和往复惯性力以及合力的曲线图。 上图是用ADAMS软件仿真计算出的往复惯性力和理论计算的比较图。粉色——理论计算,蓝色——仿真计算。理论计算:max=745N,min=-1230N; 仿真计算:max=546.6316N,min=-901.3991N. 出现上诉的原因个人理解是: (1)仿真计算的往复加速度=理论计算的往复加速度,那么产生仿真计算所得到的往复惯性力和理论计算所得到的往复惯性力之所以不同的原因就在于往复质量的计算;(2)在理论计算中,往复质量的计算是由活塞组的质量+连杆小头的质量,而在小头质量的换算过程中教科书上介绍的方法一般有两种,即两质量和三质量系统来等效代替

连杆。并且可以确定的是用三质量系统来代替两质量系统计算的更为精确只是计算起来比较困难。那么我们可以推想如果可以的话用四质量系统来代替连杆所得到的结果应该比三质量系统来代替连杆是不是更为精确?如果答案是肯定的,那么我们就有理由相信:用无数个质量点来代替连杆系统所计算得到的结果将会比2质量系统来代替连杆计算的精度要高很多,这一点用ADAMS软件可以轻松的做到。(3)现在我们来做一个对比,即同一个连杆用两质量系统和三质量系统分别来代替的时候,同一个连杆在换算到连杆小头质量是如何变化的?很容易想到用三质量系统来代替连杆的时候换算到连杆小头的质量应该比两质量换算到连杆小头的质量要小,那么我们有理由相信:当用无数个质量点来代替连杆的时候,换算到连杆小头的质量要比教科书上按两质量系统来代替连杆换算到连杆小头出的往复质量要小。(4)由于摩托车的发动机的转速很高,所以他的往复加速度很大。我们这次所研究的发动机的加速度的数量级:几千。可见,当往复质量减少1%时,则往复惯性力将减少几十牛。(这也是我们在设计高速发动机的时候要注意减少往复惯性质量的原因,而我们按照理论公式来计算的时候,实际上已经人为的增大了往复质量。)由以上的分析,我们有理由认为用ADAMS仿真软件来进行计算,所得到的结果比按纯理论方法所计算的更为精确。 三、主轴径的受力分析: (1)我们用ADAMS软件,将所研究的发动机的轴径作为刚体并且还考虑到了轴承的安装位置以及曲柄系统的质心位置的影响之后所得到的曲轴主轴径的受力分析图。 上图是曲轴的两个轴径受力的极坐标图。

机构运动学仿真

机构运动学仿真 1 机构三维模型的导入 将在solidworks中或其他三维建模软件中装配好的机构装配体以parasolid 格式保存,打开ADAMS,显示如下界面: 选择Create a new model,点击OK,建立一个新的模型,在Model name选项可命名该机构的名称,ADAMS不支持中文,亦不支持中文路径,因此导入、保存文件时文件夹及机构的命名均应以英文表示。 在ADAMS界面做上角File选项,单击Import选项,显示如下对话框: 在File Type栏选择文件格式为Parasolid,在File To Read右侧空白栏,单击鼠标右键,选择Browse查找parasolid文件,在此应注意,文件所存的文件夹必

须是英文命名,不能存于桌面。图示如下: 在Model Name栏,可自己命名,亦可右键Pick,然后点击ADAMS界面左上角的名字。完成后,点击OK,模型即成功导入。 ADAMS左侧主工具箱最下面的Render可实现模型的虚实转换,具体操作一下便知,还有图标Icons和网格Grid,在此不再赘述。 2 机构运动学模型的建立 2.1 设置零件材料和重命名 机构三维模型导入后,首先应设置各个零件的材料属性,若不设置,系统会默认一个值,但大部分时候运行时会出现错误,因此在此建议先设定材料属性,具体操作如下: 点击左上角的Edit,选择Modify,出现如下所示对话框:

双击模型的名字Model_1,列表会出现各个零件的名字,左键单击选择零件,点击OK,弹出对话框: Body栏显示的是模型的名字,在Category栏可选择模型的名字和位置、质量属性,初始速度和位置等几个选项,最常用的是更改零件的名字和更改零件的材料。零件质量属性的修改有三种方式,图示为User Input(用户自输入),用于ADAMS的材料库无法准确描述所用材料时,常用的是 在Material Type栏,右键单击,选择Browse,在弹出的材料库中选择所需要的材料。 另外,亦可直接右键单击零件,在弹出的菜单中选择Modify修改材料属性和Rename修改零件名字,在零件较多时,需对各个零件命名以便于区分。否则,单靠系统默认的命名将难于区分,易产生错误。

运动学实验

运动学实验 预习报告要求 1.无需画原理图 2.归纳简述实验内容与步骤(不要全抄讲义) 3.绘制数据记录表格 4.预习要求 1、了解超声波接收器运动速度与接频率之间的关系,验证多普勒效应,并由f-v关系直线的斜率求声速。 2、了解如何利用多普勒效应测量物体运动过程中多个时间点的速度,由显示屏显示v-t关系图,或调阅有关测量数据,即可得物体在运动过程中的速度变化情况,可研究:(1)自由落体运动,并由v-t关系直线的斜率求重力加速度。 (2)简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 3、列出测量数据记录表。 预习思考当你在铁道旁看见火车由远及近时,你听到的声音频率有没有变化?怎么变化?为什么? 实验相关知识与内容 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①自由落体运动,并由V-t关系直线的斜率求重力加速度。 ②简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ③匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线

高考物理力学,运动学实验题

课时作业(二十六)[第26讲本单元实验] 基础热身 1.在验证机械能守恒定律的实验中: (1)下列实验操作顺序正确合理的一项是________(填序号) A.先将固定在重物上的纸带穿过打点计时器,再将打点计时器固定在铁架台上 B.先用手提着纸带,使重物静止在打点计时器下方,再接通电源 C.先放开纸带让重物下落,再接通打点计时器的电源 D.先取下固定在重物上的打好点的纸带,再切断打点计时器的电源 (2)质量m=1kg的重锤自由下落,在纸带上打出了一系列的点,如图K26-1所示,相邻计数点时间间隔为0.02s,长度单位是cm,g取9.8m/s2.则(保留3位有效数字): ①打点计时器打下计数点B时,重锤的速度v B=__________m/s; ②从点O到打下计数点B的过程中,重锤重力势能的减少量ΔE p=______________J,动能的增加量ΔE k=__________________J; ③实验结论是________________________________________________________________________ ________________________________________________________________________. 图K26-1 2.在用如图K26-2所示的装置做“探究动能定理”的实验时,下列说法正确的是() 图K26-2 A.通过改变橡皮筋的条数改变拉力做功的数值 B.通过改变橡皮筋的长度改变拉力做功的数值 C.通过打点计时器打下的纸带来测定小车加速过程中获得的最大速度 D.通过打点计时器打下的纸速来测定小车加速过程中获得的平均速度 技能强化 3.2011·德州模拟关于“探究动能定理”的实验,下列叙述正确的是() A.每次实验必须设法算出橡皮筋对小车做功的具体数值 B.每次实验中,橡皮筋拉伸的长度没有必要保持一致 C.放小车的长木板应该尽量水平 D.先接通电源,再让小车在橡皮筋的作用下弹出 图K26-3 4.2010·安徽卷利用如图K26-3所示装置进行验证机械能守恒定律的实验时,需要测量物体由静止开始自由下落到某点时的瞬时速度v0和下落高度h.某班同学利用实验得到的纸带,设计了以下四种测量方案. A.用刻度尺测出物体下落的高度h,并测出下落时间t,通过v=gt计算出瞬时速度v0 B.用刻度尺测出物体下落的高度h,并通过v=2gh计算出瞬时速度v0

基于UG的运动仿真及高级仿真

《基于UG的运动仿真及高级仿真》

专业文档供参考,如有帮助请下载。. 项目一:机构运动仿真 项目要求:熟悉UG机构运动仿真模块的内容,掌握运动仿真的一般流程和方法,并根据分析输出结果对机构进行优化。 任务一:熟悉掌握运动仿真基础知识

运动分析模块(Scenario for motion)是UG/CAE模块中的主要部分,用于建立运动机构模型,分析其运动规律。通过UG/Modeling的功能建立一个三维实体模型,利用UG/Motion的功能给三维实体模型的各个部件赋予一定的运动学特性,再在各个部件之间设立一定的连接关系既可建立一个运动仿真模型。 UG/Motion模块可以进行机构的干涉分析,跟踪零件的运动轨迹,分析机构中零件的速度、加速度、作用力、反作用力和力矩等。运动分析模块的分析结果可以指导修改零件的结构设计(加长或缩短构件的力臂长度、修改凸轮型线,调整齿轮比等)或调整零件的材料(减轻或加重或增加硬度等)。设计的更改可以反映在装配主模型的复制品分析方案中,再重新分析,一旦确定优化的设计方案,设计更改就可反映在装配主模型中。 一、运动方案创建步骤 1.创建连杆(Links); 2.创建两个连杆间的运动副(Joints) 3.定义运动驱动(Motion Driver) ?无运动驱动(none):构件只受重力作用 ?运动函数:用数学函数定义运动方式 ?恒定驱动:恒定的速度和加速度 ?简谐运动驱动:振幅、频率和相位角 ?关节运动驱动:步长和步数 二、创建连杆 创建连杆对话框将显示连杆默认的名字,格式为L001、L002 (00) 专业文档供参考,如有帮助请下载。. 质量属性选项: 质量特性可以用来计算结构中的反作用力。当结构中的连杆没有质量特性时,不能进行动力学分



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3