c5a电池

您所在的位置:网站首页 电池充电电压电流变化 c5a电池

c5a电池

2024-07-13 21:11| 来源: 网络整理| 查看: 265

1aa6e1964ebdbd9eacd0881f192441e8.png f26f4a6b53dfa3c00676e3455c6ad34a.png 4359135a4812c9b7f5cff2caf6912c1c.png 82953aede46ea1975804738357c1b9d9.png 0dd2c38e0fbab41cb8f9ed36f2659d58.png 389de61415b8b1b1ba139f6b6c7b253d.png efb56fd2d19f451ee63ca7f68c230eca.png aa32925c8a3411acc9a8673e18f480b6.png 27e018638acb1148c60ce2ffe1c8b5aa.png 3a0b6e8b0aa63c525b356ccff7cc4b38.png 33455198c6c529121191174213adb49b.png 50d0fe54ff1b8d00b376db350e652a56.png

8路5V20A检测仪,分容均衡测试实例

ce343e254dd0f552f1cde36d156b61f2.png 02c1d4775efeb089fb7945582f7e911f.png 4744caba08296f3bfdb158b7f862edc5.png f99ba599e0abfa4fd2bb64f5680aba06.png 5a308069215cf5afe3377a034a9623be.png 55d3ca7d6189abb1670b70855c06aeb7.png 1f5ec5a5c6b06720a7e09dd9853d93b8.png fad777ab2efeda5244dfaf6694be687d.png 181baf1d0730d7c4689e0de7e6f1a53e.png 9c96a2e80382c3202f95b00d0e9c07be.png 0336be09d73dff3b69f5f8b467d010d9.png cbd4352f0aa916183f65f0c331b06588.png

16路5V10A分容均衡测试仪部分应用案例

1.4 电池的工作电压

工作电压又称端电压,是指电池在工作状态下即电路中有电流流过时电池正负极之间的电势差。在电池放电工作状态下,当电流流过电池内部时,需克服电池的内阻所造成阻力,会造成欧姆压降和电极极化,故工作电压总是低于开路电压,充电时则与之相反,端电压总是高于开路电压。即极化的结果使电池放电时端电压低于电池的电动势,电池充电时,电池的端电压高于电池的电动势。

由于极化现象的存在,会导致电池在充放电过程中瞬时电压与实际电压会产生一定的偏差。充电时,瞬时电压略高于实际电压,充电结束后极化消失,电压回落;放电时,瞬时电压略低于实际电压,放电结束后极化消失,电压回升。

fb45e8cdb5ad85db88c05672c44cdef4.png

电池端电压的组成如图4所示,表达式为:

8821700f0fc66bfcc5503418e6294683.png

其中,E+、E—分别表示正、负极的电势,E+0、E—0分别表示正、负极的平衡电极电势,VR表示欧姆极化电压,η+、η—分别表示正、负极的过电势。

2.放电测试基本原理

基本了解电池的电压之后,我们开始解析锂离子电池的放电曲线。放电曲线基本反映电极的状态,是正负两个电极状态变化的叠加。

fc449f75753af070fd70506c9f6a1b4b.png

上图为常见商业电池的典型放电的电流和电压曲线。在整个放电过程中锂离子电池的电压曲线可以分为 3 个阶段:

1)电池在初始阶段端电压快速下降,放电倍率越大,电压下降的越快;

2)电池电压进入一个缓慢变化的阶段,这段时间称为电池的平台区,放电倍率越小,平台区持续的时间越长,平台电压越高,电压下降越缓慢。

3) 在电池电量接近放完时, 电池负载电压开始急剧下降直至达到放电截止电压。

2.1 放电测试模式

充放电测试设备一般使用半导体器件作为通流元件,通过调整半导体器件的控制信号,可以模拟出恒流,恒压,恒阻等多种不同特性的负载。锂离子电池放电测试模式主要包括恒流放电、恒阻放电、恒功率放电等。在各放电模式下还可以分出连续放电和间隔放电,其中根据时间的长短,间隔放电又可以分为间歇放电和脉冲放电。放电测试时,电池根据设定的模式进行放电,达到设定的条件后停止放电,放电截止条件包括设定电压截止、设定时间截止、设定容量截止,设定负电压梯度截止等。电池放电电压的变化与放电制度有关,即放电曲线的变化还受放电制度的影响,包括:放电电流,放电温度,放电终止电压;间歇还是连续放电。放电电流越大,工作电压下降越快;随放电温度的增加,放电曲线变化较平缓。

(1)恒流放电

恒流放电时,设定电流值,然后通过调节数控恒流源来达到这一电流值,从而实现电池的恒流放电,同时采集电池的端电压的变化,用来检测电池的放电特性。恒流放电是放电电流不变,但是电池电压持续下降,所以功率持续下降的放电。图3就是锂离子电池恒流放电的电压和电流曲线。由于用恒电流放电,时间坐标轴很容易转换为容量(电流与时间的乘积)坐标轴。图6是恒流放电时电压-容量曲线。恒流放电是锂离子电池测试中最常使用的放电方式。

04006846093657f27f99a1f96cdbd69d.png

图6 不同倍率下的恒流恒压充电、恒流放电曲线(来源于参考文献)

(2)恒功率放电

恒功率放电时,首先设定恒功率的功率值P,并采集电池的输出电压U。在放电过程中,要求P恒定不变,但是U是不断变化的,所以需要根据公式I = P / U不断地调节数控恒流源的电流I以达到恒功率放电的目的。保持放电功率不变,因放电过程中电池的电压持续下降,所以恒功率放电中电流是持续上升的。由于用恒功率放电,时间坐标轴很容易转换为能量(功率与时间的乘积)坐标轴。图7是锂离子电池典型的恒功率充、放电曲线。

9afc413336e63f2906409922b5844602.png

图7 不同倍率下的恒功率充、放电曲线

恒流放电和恒功率放电对比

7ccdc52ce352ce7c82f66ccac6f93025.png

图8不同倍率下的磷酸铁锂电池两种模式下不同倍率充放电测试结果(a)充放电容量图;(b)充放电曲线图

根据图8(a)的容量曲线,恒流模式下随着充放电电流的增大,电池实际充放电容量均逐渐变小但变化幅度相对较小。恒功率模式下电池的实际充放电容量也随功率的增加而逐渐减小,且倍率越大,容量衰减越快。1 h 率放电容量较恒流模式为低。同时,当充放电倍率低于5 h 率时,恒功率条件下电池容量较高,而高于5 h 率时则恒流条件下电池容量较高。

从图8(b)所示的容量-电压曲线可以看出,在低倍率条件下,磷酸铁锂电池两种模式容量-电压曲线接近,且充放电电压平台变化不大,但在高倍率条件下,恒流-恒压模式的恒压时间明显加长,且充电电压平台明显升高,放电电压平台明显降低。

(3)恒阻放电

恒阻放电时,首先设定恒定的电阻值R,采集电池的输出电压U,在放电过程中,要求R恒定不变,但是U是不断变化的,所以需要根据公式I=U/R不断地调节数控恒流源的电流I值以达到恒电阻放电的目的。电池的电压在放电过程是一直在下降的,电阻不变,所以放电电流I也是一个下降的过程。

(4)连续放电、间歇放电和脉冲放电

电池在恒电流、恒功率和恒电阻三种方式下放电的同时,利用定时功能以实现连续放电、间歇放电和脉冲放电的控制。图9是典型脉冲充放电测试的电流曲线和电压曲线。

914304743fc517d31dd38468b739e05c.png

图9 典型脉冲充放电测试的电流曲线和电压曲线

2.2 放电曲线包含的信息

放电曲线是指放电过程中,电池的电压、电流、容量等随时间的变化的曲线。充放电曲线中所包含的信息非常丰富,具体包括容量,能量,工作电压及电压平台,电极电势与荷电状态的关系等。放电测试时记录的主要数据就是电流和电压的时间演变,从这些基础数据可以获取很多参数,以下详细介绍放电曲线能够获取的参数。

(1)电压

锂离子电池放电测试中,电压参数主要包括电压平台、中值电压、平均电压、截止电压等。

平台电压是指电压变化最小而容量变化较大时对应的电压值,可以通过dQ/dV的峰值得出。

中值电压是电池容量一半时对应的电压值,对于平台比较明显的材料,如磷酸铁锂和钛酸锂等,中值电压就是平台电压。

平均电压是电压-容量曲线的有效面积(即电池放电能量)除以容量,计算公式为Ü = ∫U(t)*I(t)dt / ∫I(t)dt。

截止电压是是指电池放电时允许的最低电压,如果电压低于放电截止电压后继续放电,电池两端的电压会迅速下降,形成过度放电,过放电可能造成电极活性物质损伤,失去反应能力,使电池寿命缩短。

如第一部分所述,电池的电压与正负极材料的荷电状态及电极电势相关。

(2)容量和比容量

电池容量是指一定放电制度下(在一定的放电电流I,放电温度T,放电截止电压V条件),电池所放出的电量,表征电池储存能量的能力,单位是Ah或C。容量受很多引素的影响,如:放电电流、放电温度等。容量大小是由正负极中活性物质的数量多少来决定的。

理论容量:活性物质全部参加反应所给出的容量。

实际容量:在一定的放电制度下实际放出的容量。

额定容量:指电池在设计的放电条件下,电池保证给出的最低电量。

放电测试中,容量通过电流对时间积分计算,即C = ∫I(t)dt,恒流放电时电流恒定不变,C = ∫I(t)dt = It;恒电阻R放电时,C = ∫I(t)dt = (1/R)*∫U(t)dt ≈ (1/R)*Üt(Ü为放电平均电压,t为放电时间)。

比容量:为了对不同的电池进行比较,引入比容量概念。比容量是指单位质量或单位体积电极活性物质所给出的容量,称为质量比容量或体积比容量。通常计算方法为:比容量=电池首次放电容量 /(活性物质量*活性物质利用率)

影响电池容量的因素:

a.电池的放电电流:电流越大,输出的容量减少;

b.电池的放电温度:温度降低,输出容量减少;

c.电池的放电截止电压:是由电极材料以及电极反应本身的限定来设定的放电时一般为3 .0V或2 .75V。

d.电池的充放电次数:电池经过多次充放电后,由于电极材料的失效,电池的放电容量会相应减少。

e.电池的充电条件:充电倍率、温度、截止电压等影响充入电池的容量,从而决定放电容量。

电池每次充放数据会有一定偏差,跟电池性能,检测条件,机器本身精度有关。

电池容量的测定方法:

不同行业根据使用工况,具有不同的测试标准。对于3C产品用的锂离子电池,根据国标《GB/T18287-2000蜂窝电话用锂离子电池总规范》,电池的额定容量测试方法为:

a)充电:0.2C5A充电;

b)放电:0.2C5A放电;

c)进行五个循环,其中有一次达到即判定为合格。

对于电动汽车行业,根据国标《GB/T 31486-2015 电动汽车用动力蓄电池电性能要求及试验方法》,电池的额定容量是指室温下电池以1I1(A)电流放电,达到终止电压时所放出的容量(Ah),其中I1为1小时率放电电流,其数值等于C1 (A)。测试方法为:

a)室温下,以1I1(A)电流恒流充电至企业规定的充电终止电压时转恒压充电,至充电终止电流降至0.05I1(A)时停止充电,充电后搁置1h。

b) 室温下,电池以1I1(A)电流放电,直到放电至企业技术条件中规定的放电终止电压;

c) 计量放电容量(以Ah计),计算放电比能量(以Wh/kg计);

d) 重复步骤a)-c)5次,当连续3次试验结果的极差小于额定容量的3%,可提前结束试验,取最后3次试验结果平均值。

平时检测电池,可用检测仪多次测试电池数据,等检测数据稳定后取平均值。

2.3 放电曲线的基本形式

放电曲线最基本的形式就是电压-时间和电流时间曲线,通过对时间轴进行变换计算,常见的放电曲线还有电压-容量(比容量)曲线、电压-能量(比能量)曲线、电压-SOC曲线等。

(1)电压-时间和电流时间曲线

5ce01dd97c3496b976b6fda10424cc0f.png

图10 电压-时间和电流-时间曲线

(2)电压-容量曲线

1bffe42306da7c3cc77e2892956b66dc.png

图11 电压-容量曲线

(3)电压-能量曲线

5d0b521d690dbdaf34f97a8d5ad82ea5.png

图12 电压-能量曲线



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3