场效应管原理

您所在的位置:网站首页 电气版CAD哪个版本好 场效应管原理

场效应管原理

2023-09-16 05:09| 来源: 网络整理| 查看: 265

内容来源为21ic整理,侵权请联系删除。

场效应管是较新型的半导体材料,利用电场效应来控制晶体管的电流,因而得名。它的外型也是一个三极管,因此又称场效应三极管。它只有一种载流子参与导电的半导体器件,是一种用输入电压控制输出电流的半导体器件。从参与导电的载流子来划分,它有电子作为载流子的N沟道器件和空穴作为载流子的P沟道器件。从场效应三极管的结构来划分,它有结型场效应三极管和绝缘栅型场效应三极管之分。

1.结型场效应三极管

(1) 结构

N沟道结型场效应三极管的结构如图1所示,它是在N型半导体硅片的两侧各制造一个PN结,形成两个PN结夹着一个N型沟道的结构。两个P区即为栅极,N型硅的一端是漏极,另一端是源极。

图1结型场效应三极管的结构

(2) 工作原理

以N沟道为例说明其工作原理。

当UGS=0时,在漏、源之间加有一定电压时,在漏源间将形成多子的漂移运动,产生漏极电流。当UGS0时,将使ID进一步增加。UGSUGS(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。

N沟道增强型MOS管的转移特性曲线,见图4。

图4转移特性曲线

(3)P沟道MOS管

P沟道MOS管的工作原理与N沟道MOS管完全相同,只不过导电的载流子不同,供电电压极性不同而已。这如同双极型三极管有NPN型和PNP型一样。

3 主要参数

(1) 直流参数

指耗尽型MOS夹断电压UGS=UGS(off) 、增强型MOS管开启电压UGS(th)、耗尽型场效应三极管的饱和漏极电流IDSS(UGS=0时所对应的漏极电流)、输入电阻RGS.

(2) 低频跨导gm

gm可以在转移特性曲线上求取,单位是mS(毫西门子)。

(3) 最大漏极电流IDM

2 场效应半导体三极管

场效应半导体三极管是只有一种载流子参与导电的半导体器件,是一种用输入电压控制输出电流的半导体器件。从参与导电的载流子来划分,它有电子作为载流子的N沟道器件和空穴作为载流子的P沟道器件。从场效应三极管的结构来划分,它有结型场效应三极管JFET(Junction type Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide Semicon-ductor FET)。

2.2.1 绝缘栅场效应三极管的工作原理

绝缘栅场效应三极管(MOSFET)分为:

增强型 →N沟道、P沟道

耗尽型 →N沟道、P沟道

N沟道增强型MOSFET的结构示意图和符号见图02.13。 电极D(Drain)称为漏极,相当双极型三极管的集电极;

G(Gate)称为栅极,相当于的基极;

S(Source)称为源极,相当于发射极。

(1)N沟道增强型MOSFET

① 结构

根据图02.13,N沟道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。P型半导体称为衬底,用符号B表示。

图02.13 N沟道增强型MOSFET的结构示意图和符号

② 工作原理

1.栅源电压VGS的控制作用

当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S间形成电流。

当栅极加有电压时,若0

进一步增加VGS,当VGS>VGS(th)时( VGS(th) 称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层。随着VGS的继续增加,ID将不断增加。在VGS=0V时ID=0,只有当VGS>VGS(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。

VGS对漏极电流的控制关系可用iD=f(vGS)?VDS=const这一曲线描述,称为转移特性曲线,见图02.14。

图02.14 转移特性曲线

转移特性曲线的斜率gm的大小反映了栅源电压对漏极电流的控制作用。 gm 的量纲为mA/V,所以gm也称为跨导。

跨导的定义式如下:

2.漏源电压VDS对漏极电流ID的控制作用

当VGS>VGS(th),且固定为某一值时,来分析漏源电压VDS对漏极电流ID的影响。VDS的不同变化对沟道的影响如图02.15所示。根据此图可以有如下关系

当VDS为0或较小时,相当VGD>VGS(th),沟道分布如图02.15(a),此时VDS 基本均匀降落在沟道中,沟道呈斜线分布。在紧靠漏极处,沟道达到开启的程度以上,漏源之间有电流通过。

当VDS增加到使VGD=VGS(th)时,沟道如图02.15(b)所示。这相当于VDS增加使漏极处沟道缩减到刚刚开启的情况,称为预夹断,此时的漏极电流ID基本饱和。当VDS增加到VGD?VGS(th)时,沟道如图02.15(c)所示。此时预夹断区域加长,伸向S极。 VDS增加的部分基本降落在随之加长的夹断沟道上, ID基本趋于不变。

图02.15 漏源电压VDS对沟道的影响(动画2-5)

当VGS>VGS(th),且固定为某一值时,VDS对ID的影响,即iD=f(vDS)?VGS=const这一关系曲线如图02.16所示。这一曲线称为漏极输出特性曲线。

(a) 输出特性曲线 (b)转移特性曲线

图02.16 漏极输出特性曲线和转移特性曲线

(2)N沟道耗尽型MOSFET

N沟道耗尽型MOSFET的结构和符号如图02.17(a)所示,它是在栅极下方的SiO2绝缘层中掺入了大量的金属正离子。所以当VGS=0时,这些正离子已经感应出反型层,形成了沟道。于是,只要有漏源电压,就有漏极电流存在。当VGS>0时,将使ID进一步增加。VGS



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3