电感

您所在的位置:网站首页 电感值的基本单位 电感

电感

2024-02-18 08:38| 来源: 网络整理| 查看: 265

磁芯

磁芯对于电感来说,就相当于是电容的中间绝缘介质。磁芯决定了电感的很多特性。比如大家都知道, ①电感线圈里面加个磁芯,电感值会增大很多,这是为什么呢? ②还有电感有饱和电流,那电感为什么会饱和呢? ③磁滞回线又是什么呢? ④磁导率又是个啥? 首先来说下物质的磁性是怎么来的。所有物质的磁性都是电流产生的,永久磁铁的磁性就是分子电流产生的。所谓分子电流就是磁性材料原子内的电子围绕原子核旋转形成的。 在这里插入图片描述 电子运动形成一个个小的磁铁,这些小的磁体在晶格中排列在一个方向,形成一个个小的磁区域,也就是磁畴。正是磁铁里面的磁畴整体排列有方向,因此宏观上我们看到磁铁有磁性。我们使用的磁芯一般是软磁铁,如果没有磁化过,里面的磁畴是乱序的,所以对外不显示磁性。 在这里插入图片描述

磁芯如何使电感值增大

为什么电感线圈里面加个磁芯,电感值会增大很多? 在线圈没有磁芯的时候,给线圈通过一定的电流,根据电生磁原理,这时会有磁场穿过线圈,假定这时产生的磁场强度为 H。 在这里插入图片描述 如果这时候线圈中有磁芯,磁芯中的部分磁畴会在磁场强度 H 的作用下有序排列,这些磁畴会产生与原磁场方向相同的磁场,并且比 H 大的多,所以总的磁场会增大很多,二者叠加后的磁场强度称为 B。 在这里插入图片描述 这种增大磁场的能力,有一个参数,叫磁导率µ,B=µH。前面的解释是为了便于理解。

事实上µ的严谨的定义是这样的。在相同条件下,铁磁介质中所产生的磁感应强度比空气介质中大得多。为了表征这种特性,将不同的磁介质用一个系数µ来考虑, µ称为介质磁导率,表征物质的导磁能力。在介质中, µ越大,介质中磁感应强度 B 就越大。

为什么电感有饱和电流

前面说到,因为磁芯里面磁畴的有序排列,使得电流产生的磁场被大大加强。电流越大,有序排列的磁畴也越多,产生的磁场也越大,穿过线圈的磁通量也越大,基本是和电流成正比的。电感定义就是线圈的自感系数,等于磁通量与电流的比值,所以正常情况下,电感 L 为常量。当电流达到一定程度,这个时候磁芯里面所有的磁畴已经都有序排列了,即使再增大电流,已经没有多余的磁畴能有序排列来增加磁场了,所以,磁场强度基本不增加。这个时候,我们就说电感已经饱和了,电流增大,而磁通量不再增加,电感值等于磁通除以电流,所以电感值下降。通常,我们实际用的电感,饱和电流一般定义为电感值相对初始值下降 30%时对应的电流值。

B-H磁滞回线理解

在这里插入图片描述 横坐标是磁场强度 H,纵坐标为磁感应强度 B,仅从字面上难以理解它们之间的区别。磁场强度 H 通常是通电电流产生的,所以可以理解为通电线圈本身,没加任何介质材料时产生的磁场强度。而 B 呢,就是填充上磁性材料是总的磁感应强度。H 主要与电流大小相关,而 B 与磁性材料相关。B-H 磁滞回线描述的是磁性材料反复磁化的特性。

我们先看 OS 这一段,磁性材料如果先前没有磁化过,那么初始磁性为 0,就在 O 点,这时如果进行磁化,增大 H,那么会沿曲线到达 S 点,S 点处,完全磁饱和。这个时候如果减小 H 到 0,并不会回到 O 点,只会回到 Br 点,Br 为剩磁,这是因为部分磁畴发生了刚性偏转。因为剩磁的存在,理论上磁性材料再也回不到 O 点了,除非加热到居里温度。这种磁化曲线与退磁曲线不重合,B 的改变滞后 H 的现象称为磁滞现象。

到达 Br 后,继续施加反向的磁场,到达 -Hc 处,此时 B 才能为 0。Hc 也叫矫顽磁力。意义就是,由于磁滞现象,要使磁介质中的 B 为 0,需要一定的反向磁场强度。

继续增大反向的磁场,到达 -Hs 处,此时发生反向磁饱和。如果此时减小反向的磁场到 0,就会到 -Br 点,再增大正向磁场会到达 Hc 点,继续增大会会到 S 点。这就是一个完整的磁滞回线。

我们理解这个磁滞回线有什么用呢?

很容易想到,永磁体就是那种剩磁 Br 比较大的,属于硬磁材料。

而我们使用的电感,磁芯应是软磁性材料,剩磁比较小。为什么呢?可以这样理解,我们理想的电感是储能元件,有电流时储存能量,没电流时能量被释放,本身并不消耗能量,并且这个能量是磁场能。而实际的磁芯,电流流过时,产生磁场,有了磁场能,然后电流变为 0,因为磁滞现象,磁芯会有剩磁,也就是说磁芯没有把磁场能全部还回来,自己留了一部分,这一部分其实就是磁芯的磁滞损耗了。所以说,磁滞越大,那么损耗也就越大,为了减小损耗,电感磁芯自然就选择软磁铁材料了。

另外,我们可以推断出,电流达到一定值之后,电感感量会随电流的增大也减小。因为 B=uH,所以磁导率 u 是这个曲线的斜率。可以看到,整个曲线类似于 S 型,在电流比较小时, H 与 B 基本是线性的,磁导率 u 基本不变,那么电感感量也不变。而电流比较大时,H 与 B 是非线性的,斜率逐渐变低,也就是说 u 逐渐变小,那么电感的感量也是慢慢变小的。相信到这里,你就能明白,为什么电感规格书手册中,电感与电流的曲线是那样的了。

在这里插入图片描述 本节转自:https://www.eefocus.com/component/473173

气隙 什么是气隙?

磁芯的气隙,是指一部分磁路是由空气构成,故称为空气间隙,简称气隙。如 EI 型磁芯,E 和 I 的结合总存在缝隙,磁路就有气隙。圆形磁环中间开个缺口,缺口处就是气隙。 在这里插入图片描述

气隙有什么用?

①气隙可以减小磁导率

②增大饱和电流

③增大储存能量的能力

④也可以减小剩磁

为什么有这些作用呢?

下面从微观的角度来解释下这些作用产生的原因

现在有一个圆形磁环,我们绕上线圈,通上正好使磁芯饱和的电流。正好饱和,说明里面所有的磁畴都已经有序排列了。

在这里插入图片描述 这时在磁环上开个气隙,去除掉一部分磁芯,那么这一部分磁畴也就被去掉了。原来在气隙处的磁畴是有序排列的,相当于是一个小磁铁,所以对气隙旁边的磁畴的有序排列有正向的作用力,现在被去掉了,所以作用力消失。气隙旁边的磁畴原来是恰好可以全部都有序排列的,现在受到的正向作用力变小了,所有就不能全部有序排列了,磁性变小,进一步导致气隙旁边的旁边的磁畴受到的作用力也变小,也没有全部有序排列,这样一个传一个,整个磁芯的磁畴没有有序排列的更多。因此,这个开了气隙的磁环是没有磁饱和的(因为饱和说明里面所有的磁畴都已经有序排列了)。 在这里插入图片描述 要想使磁畴再次全部有序排列,我们必须通上更大的电流,直到再次饱和。 在这里插入图片描述 因此,可以看出,增加气隙,饱和电流增大了。并且从整体上看,磁畴总的有序排列变少,那么产生的磁通也变小了,即磁导率变小了。也可以看出,气隙的增加,从整体上看,弱化了磁畴间的正向相互作用力,因此在没有电流的时候,剩磁变小了。

假定没有气隙时,完全磁饱和对应的磁场强度为 Bm,那么加了气隙以后,增大电流,使磁环的所有磁畴再次达到饱和,这时磁场强度应该是多少呢?我们假想一下,磁环里面的所有磁畴在饱和电流时全部排列,也就是最难偏转的那个磁畴在此时正好偏转,无论我们加不加气隙,要是那个最难的磁畴发生偏转,所以它所在的地方的磁场强度就是 Bm。所以加了气隙之后,饱和时的磁场强度还是 Bm,相对于之前没有变化。 在这里插入图片描述 磁场能量密度为单位体积所包含的磁场能,其公式为 B 的平方除以 2μ,磁芯的储能(可以认为Bm)不变。而气隙处的磁导率μ变成了空气,空气的磁导率一般只有磁环材料的几十分之一到几千分之一,因此,在气隙处的储能密度提升了成百上千倍。 在这里插入图片描述 因此,气隙增大了存储能量的能力。

那么气隙是越大越好吗?显然也不是的,因为气隙最大的时候就是没有磁环,也就是空芯电感,理论上空芯电感永不饱和,储能没有上限,只要电流够大。而实际中我们的电流总是有上限的,太大导线也承载不了。

事实上,我们说气隙增大了储能上限,说的是在各自都饱和情况下的储能。而在都不饱和的情况下,通上相同的电流,不加气隙的储能更高,因为能量密度公式等于二分之一的μ乘以 H 的平方,相同电流时,H 相同,而不加气隙时磁导率更高。气隙太大,会因为磁导率太低,所以电感感量很难做上去,所以我们需要选择合适的气隙大小。(不加气隙爆发力强,加了气隙耐力强)

合适的气隙大小

那么,什么是合适的气隙大小呢?

在电路设计中,输入输出电流的最大值,还有电感值通常是确定的。所以我们在保证通以最大电流时,电感磁芯不发生饱和,因此气隙不能太小,否则很容易饱和。同时考虑成本、体积等因素,又要尽量减小气隙,这样才能以更小的体积实现更大的感量,两者综合的结果,就是一个合适的气隙大小。当然,这只是从会不会磁饱和这一方面来考虑,实际中则更为复杂,需要考虑材料类型,温度,损耗,漏感等等各个方面。 在这里插入图片描述

磁滞回线的变化 我们来看下加气隙之后,磁滞回线的变化,这会使我们进一步理解加气隙的影响。 在这里插入图片描述 横轴是电流产生的磁场 H,纵轴是加磁性磁性材料后总的磁感应强度 B。我们依次来看不加气隙,小气隙,大气隙,以及空芯的磁滞回线。完全磁饱时磁感应强度都为 Bm,磁滞在没有气隙的时候最大。因为磁场 H 主要与电流相关,所以横轴也可以看作是电流的大小,饱和电流随着气隙的增大而增大。(H和电感量是什么关系?) 在这里插入图片描述 储能密度为二分之一的 BH,储能大小为所形成矩形面积的一半,所以都饱和时,储能随着气隙的增大而增大。

而在都不饱和,通上相同的电流时,反而是没有气隙时的储能最大。 在这里插入图片描述 总结一下 1、气隙可以减小磁导率

2、气隙可以增大饱和电流

3、气隙可以增大储能上限

4、气隙可以减小剩磁

5、设计需要选择合适的气隙大小

本节转自:https://www.eefocus.com/component/473763

寄生电感

任意取一个曲面,如果里面通过的磁感线数量发生变化,那么会在这个曲面感生出电场。 在这里插入图片描述 知道了这些,那么上面那个问题(产生的电场是环形电场的,怎么到这了变成了沿着导线了方向了呢)就容易明白了,理解过程如下图。 在这里插入图片描述 我们在通电导线上面和下面对称选两个面,假如电流在曲面 1 产生的磁场向上,那么在曲面 2 产生的磁场方向就是向下的,两者是相反的。如果电流减小,那么磁场 B 会减小,产生的环形电场如黄色线圈,两个曲面的磁场方向不同,所以产生的环形电场是一个顺时针,一个逆时针。两个环形电场在导线上的叠加,电场方向就是沿导线向右的,也说明了此时是阻止电流变小的。 总得来说,一段导线上如果有电流变化,那么会自己产生感应电动势阻止电流的变化,这不就是电感么。

三个电流 饱和电流Isat

饱和电流Isat一般是指电感值相对于初始值衰减30%(一些厂家是10%,40%)的偏置电流。 饱和电流为什么会存在呢? 电感一般都含有磁芯,特别是功率电感,磁芯是存在磁饱和的。什么是磁饱和呢?由于磁芯材料自身的特性,其通过的磁通量是不可以无限增大的。通过一定体积导磁材料的磁通量大到一定数量将不再增加,不管你再增加电流或匝数,就达到磁饱和了。当电流已经使磁芯饱和,再增加电流,也基本不会再使磁通量增加,或者说增加很少,等同于空心电感的增量,因为饱和之后磁芯失去作用,等同于空心电感。电流增大,而磁通量不增加,那么电感阻碍电流的作用就没有了,也就是说电感器失去了作用,这时的磁芯完全饱和。 在这里插入图片描述 当然我们并不会等到电感完全饱和。事实上,在电流比较小的时候,单位电流产生的磁通量与电流成正比,这个意思就说磁芯磁导率为常数。而随着电流慢慢增大,单位电流的增加产生的磁通量的增量是下降的,也就是说随着电流的增加磁导率是慢慢下降的,因此,电感的感量也下降。所以就有了前面的定义,电感量衰减到30%(一些厂家是10%,40%),我们就说电感饱和了。 还有个问题,饱和电流到底是有效值还是瞬间值呢?毕竟用于开关电源中,电感电流是直流上面叠加交流分量,并且交流分量还不小,这个必须得搞清楚。 饱和电流可以理解为瞬间值,因为电感的饱和的原因是因为磁芯饱和,只要电流达到一定值,就会使磁芯磁饱和,而不论你是什么时候达到。所以在电路设计中,一定不要让电感的最大电流值(瞬间值)超过其饱和电流。

温升电流Irms

温升电流,一般指电感自我温升温度不超过40℃时的电流。 曾经有人问我,这个温升电流对应的温度,指的是电感内部的,还是指的外壳?这个问题我也没找到答案,不过应该不影响我们进行电感选型。 在这里插入图片描述

如上图,是顺络的某电感参数,可以看到,电感的工作温度范围是-40到+125℃,后面括号说明了是包含自我温升的,所以,当电路工作环境温度小于125-40=85℃时,只要我们电感电流不超过温升电流(此时温升为40度,加上环境温度,正好125度),那么就没有问题,当然了,我们会留一些裕量。 估计又有人问了,那我环境温度小于85度,那是不是就可以超过额定温升电流Irms使用呢? 理论上超一点没有问题,但是不建议,因为会有新的问题,超多少不会出现问题呢?没有一个定值。并且,因为超过Irms之后,温升随电流增加上升很快的,如下图示例所示: 在这里插入图片描述 这个曲线是顺络电感的电流与温升的关系,可以看到,曲线类似是指数曲线,在温升达到40度后,电流只要增加一点点,温度就升高很多。 所以,建议不管环境温度比85℃低多少,都不要使电感电流超过温升电流Irms,这样就万无一失了。 同样也有一个问题,这个温升电流是有效值还是瞬间值呢? 答案是有效值。温升电流,说的是使温度上升到一定值的电流大小,这不就是有效值的定义么,其符号rms也说明了这一点。

额定电流Irat

额定电流其实就是包含前面2个电流,饱和电流和温升电流。 在这里插入图片描述

总结

1、电感的额定电流,包含饱和电流和温升电流。 2、在电路设计中,电感的最大电流瞬间值不能超过饱和电流,电流有效值也不能超过温升电流。一般情况下,需要留20%-30%左右的裕量。

损耗 电感公式

https://www.eefocus.com/component/472025

持续更新中。。。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3