线性模型

您所在的位置:网站首页 用迭代法处理序列相关 线性模型

线性模型

2023-04-08 09:23| 来源: 网络整理| 查看: 265

在实际的计量经济学问题中,完全满足回归的基本假设的情况并不多见。不满足基本假定的情况。称为违背基本假定

违背基本假定的情况主要包括:

随机干扰项存在异方差 随机干扰项的序列相关(或称自相关) 解释变量之间的多重共线 解释变量为随机变量,存在内生性 异方差性

线性模型的基本假设中有var(u|x1,x2...xk)=d,即随机干扰项的方差不因自变量的不同而不同。表现在现实的经济生活中,以消费水平受到收入水平的影响为例。C = b0 + b1 * Y + u,对于收入水平Y较低的群众而言,消费情况的变化是比较小的,但是对于收入水平较大的群体而言,其消费水平的变化差异可能就非常大了。用公式表示,即为var(u|x1,x2...xk) = f(xi,d)

那么,异方差会导致什么后果呢? 导致参数估计无效,在有效性中,利用了E(u'u)= d^2 I这条同方差的假设,但是现在d与X是相关的,不能直接拿出来 参数显著性检验失去意义(显著性检验中,是要用到随机干扰项的误差的,由于异方差性,使用最小二乘法得出来的参数的方差并不是其真实方差了) 模型预测失效。(模型预测也是要用到随机干扰项的方差的) 异方差又如何检验是否存在呢? 图示检验(使用Y-X散点图,或者e^2~X散点图进行判断,如果呈现一条水平线则是不存在异方差,否则,可能存在),这种方法的问题是:判断并不准确,是否算是水平线还是复杂性的异方差无法判断 帕克(Park)检验与戈里瑟检验。 对样本残差平方ei2与X之间进行检验。设定模型ei2~ f(X)+u,如果ei^2与X之间存在显著的相关性,则原模型存在异方差性。 该检验存在的问题:模型ei^2~ f(X)+u的函数形式和变量选择存在不确定性,而且,该模型本身自己也可能存在异方差性 G-Q(Goldfeld-Quandt)检验,第一步按照某一个被认为可能存在异方差性的变量将样本进行从小到大的排序;第二步将样本分成两个部分,一个部分自变量大,一个部分自变量小;第三步对这两个样本分别进行回归,得到各自的残差平方和,在同方差的假设下,这两个残差平方和的大小应当是差异不大的;第四步使用上面得出的残差平方和构建F统计量。方法的问题:只能检验单调递增还是单调递减型方差,并且可能需要对各个解释变量进行轮流实验 怀特检验进行辅助回归:ei^2 ~ b0 + b1x1 + b2x2 + b3* x1x2 + b4x1^2 + b5* x2^2 + u,可以证明,在同方差的假设下,从该辅助回归得到的R^2与样本容量的积,渐近服从自由度为辅助回归方程中解释变量个数的卡方分布 n * R^2 ~ 卡方分布(k)

wls加权最小二乘法

思想就是将不稳定的方差转换为稳定的方差乘以一个不稳定的函数。通过变换,使得模型变为同方差的情况。

假设我们已经知道了随机误差项的方差和自变量之间的关系: var(ui) = E(ui^2) = di^2 = f(Xij) * q^2 (而不是在无异方差的情况下的 var(u|X) = q^2 )。那么,我们可以使用sqrt(f(Xij))去除以原模型,使得变化后的模型称为无异方差的情况。注:公式中j为变量的标号, i为样本的标号。

变化后的模型如下:Yi / sqrt(f(Xij)) = b0 / sqrt(f(Xij)) + b1*x1 / sqrt(f(Xij)) + ... + bk * xk / sqrt(f(Xij)) + ui / sqrt(f(Xij)) 注意到这里,每个变量Xij除以的都是其相对应的f(Xij). 上面模型,异方差就是不存在的了,便可以用加权后的模型对参数进行估计。

现在的问题是,如何对权重f(xij)进行估计呢?观察var(ui) = f(Xij) * q^2 可以发现,等式左边可以用样本残差ei2来代替,等式左边f(Xij)中有j个参数,q2为另一个参数。两边取对数,能够将等式转换为线性模型进行估计。接着就是使用帕克检验的方法,进行各种形式的尝试。从而估计出f(Xij)的形式

异方差稳健标准误法

加权最小二乘法的关键是要寻找模型中随机扰动项u的方差与解释变量间的适当的函数形式,而这并非一件容易的事。如果很难找到的话,可以用异方差的稳健标准误方法,进行替代。

在有异方差的情况下,参数估计仍然是无偏的,但是参数估计的方差和标准差会与传统的有所区别,从而无法保证估计的有效性,但并不影响估计的无偏性和一致性。那么我们仍然采用普通的最小二乘估计量,但是在进行参数检验的时候使用修正后的相应方差。(至于参数的有效性无法满足的问题,并不关注)

在无异方差下,参数估计的方差为var(b|X) = d^2 * (x'x)^(-1),在有异方差下,则为 var(b) = (x'x)^(-1) * x' * D * (x'x)^(-1) * x' ,这里D为nx1的向量。使用普通最小二乘法估计的残差平方ei^2形成的向量e'e作为向量D的代表。怀特证明了这种做法是对var(b) = (x'x)^(-1) * x' * D * (x'x)^(-1) * x'的一致估计。

当存在异方差时,异方差稳健标准误法虽然不能得到有效的参数估计,但是由于得到了普通最小二乘估计量的正确的方差估计,使得以估计量方差为基础的各项检验不再失效,是消除异方差性不良后果的主要手段。

序列相关性 序列相关的含义

在经典的线性模型假设中,有随机干扰项独立,即互不相关的假设。这个假设的意思是说,对于造成结果而言,不能由自变量解释到的那部分随机干扰项是独立的。例如,有两块相邻的水田,其各自产量与施肥量,日照量等有关。但两块水田产量的随机因素之间是不存在关系的,不会因为这块水田随机因素大,那块也大。用公式描述,就是:Cov(ui, uj)=0, i和j是观测样本。序列相关则意味着样本之间随机因素是具有相关性的,上面例子中,有些无法观测到的对水田产量的因素,例如土壤肥力如果是随机干扰项的话,那么毫无疑问相邻两块土地之间的随机干扰项是具有相关性的。

通常,由于样本中有n个随机干扰项,如果仅存在E(ui,u(i+1)) 0 (‘’是不等号),那么称之为一阶自相关,一阶自相关是比较常见的序列相关问题。例如:一个人的素质可能与他的朋友的素质是相关的,但是与其朋友的朋友的素质之间,相关性就可以忽略了;或者我们可以理解为,一个人素质与其朋友的朋友之间的关系,事实上是通过其朋友来传导的。那么,这样我们就可以将多阶自相关的问题,通过一阶自相关来理解了。因此,为了能够便于理解和进行计算,我们通常都进行一阶自相关的研究。我们将一阶自相关用公式表述为:ui = p*u(i+1) + ei -1



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3