【算法篇

您所在的位置:网站首页 用countif计算大于80分的人 【算法篇

【算法篇

#【算法篇| 来源: 网络整理| 查看: 265

如何在 sklearn 中使用 SVM

在 Python 的 sklearn 工具包中有 SVM 算法,首先需要引用工具包:

from sklearn import svm

SVM 既可以做回归,也可以做分类器。当用 SVM 做回归的时候,我们可以使用 SVR 或 LinearSVR。SVR 的英文是 Support Vector Regression。这篇文章只讲分类,这里只是简单地提一下。

当做分类器的时候,我们使用的是 SVC 或者 LinearSVC。SVC 的英文是 Support Vector Classification。

从名字上你能看出 LinearSVC 是个线性分类器,用于处理线性可分的数据,只能使用线性核函数。上一节,我讲到 SVM 是通过核函数将样本从原始空间映射到一个更高维的特质空间中,这样就使得样本在新的空间中线性可分。

如果是针对非线性的数据,需要用到 SVC。在 SVC 中,我们既可以使用到线性核函数(进行线性划分),也能使用高维的核函数(进行非线性划分)。

如何创建一个 SVM 分类器呢?

首先使用 SVC 的构造函数:model = svm.SVC(kernel=‘rbf’, C=1.0, gamma=‘auto’),这里有三个重要的参数 kernel、C 和 gamma。

kernel 代表核函数的选择,它有四种选择,只不过默认是 rbf,即高斯核函数。

linear:线性核函数——是在数据线性可分的情况下使用的,运算速度快,效果好。不足在于它不能处理线性不可分的数据。poly:多项式核函数——可以将数据从低维空间映射到高维空间,但参数比较多,计算量大。rbf:高斯核函数(默认)——可以将样本映射到高维空间,但相比于多项式核函数来说所需的参数比较少,通常性能不错,所以是默认使用的核函数。sigmoid:sigmoid 核函数——经常用在神经网络的映射中。因此当选用 sigmoid 核函数时,SVM 实现的是多层神经网络。

除了第一种线性核函数外,其余 3 种都可以处理线性不可分的数据。

参数 C 代表目标函数的惩罚系数,惩罚系数指的是分错样本时的惩罚程度,默认情况下为 1.0。当 C 越大的时候,分类器的准确性越高,但同样容错率会越低,泛化能力会变差。相反,C 越小,泛化能力越强,但是准确性会降低。

参数 gamma 代表核函数的系数,默认为样本特征数的倒数,即 gamma = 1 / n_features。

在创建 SVM 分类器之后,就可以输入训练集对它进行训练。我们使用 model.fit(train_X,train_y),传入训练集中的特征值矩阵 train_X 和分类标识 train_y。特征值矩阵就是我们在特征选择后抽取的特征值矩阵(当然你也可以用全部数据作为特征值矩阵);分类标识就是人工事先针对每个样本标识的分类结果。这样模型会自动进行分类器的训练。我们可以使用 prediction=model.predict(test_X) 来对结果进行预测,传入测试集中的样本特征矩阵 test_X,可以得到测试集的预测分类结果 prediction。

同样我们也可以创建线性 SVM 分类器,使用 model=svm.LinearSVC()。在 LinearSVC 中没有 kernel 这个参数,限制我们只能使用线性核函数。由于 LinearSVC 对线性分类做了优化,对于数据量大的线性可分问题,使用 LinearSVC 的效率要高于 SVC。

如果你不知道数据集是否为线性,可以直接使用 SVC 类创建 SVM 分类器。

在训练和预测中,LinearSVC 和 SVC 一样,都是使用 model.fit(train_X,train_y) 和 model.predict(test_X)。

如何用 SVM 进行乳腺癌检测

在了解了如何创建和使用 SVM 分类器后,我们来看一个实际的项目,数据集来自美国威斯康星州的乳腺癌诊断数据集。

医疗人员采集了患者乳腺肿块经过细针穿刺 (FNA) 后的数字化图像,并且对这些数字图像进行了特征提取,这些特征可以描述图像中的细胞核呈现。肿瘤可以分成良性和恶性。部分数据截屏如下所示:

数据表一共包括了 32 个字段,代表的含义如下:

上面的表格中,mean 代表平均值,se 代表标准差,worst 代表最大值(3 个最大值的平均值)。每张图像都计算了相应的特征,得出了这 30 个特征值(不包括 ID 字段和分类标识结果字段 diagnosis),实际上是 10 个特征值(radius、texture、perimeter、area、smoothness、compactness、concavity、concave points、symmetry 和 fractal_dimension_mean)的 3 个维度,平均、标准差和最大值。这些特征值都保留了 4 位数字。字段中没有缺失的值。在 569 个患者中,一共有 357 个是良性,212 个是恶性。

目标是生成一个乳腺癌诊断的 SVM 分类器,并计算这个分类器的准确率。首先设定项目的执行流程:

首先我们需要加载数据源;在准备阶段,需要对加载的数据源进行探索,查看样本特征和特征值,这个过程你也可以使用数据可视化,它可以方便我们对数据及数据之间的关系进一步加深了解。然后按照“完全合一”的准则来评估数据的质量,如果数据质量不高就需要做数据清洗。数据清洗之后,你可以做特征选择,方便后续的模型训练;在分类阶段,选择核函数进行训练,如果不知道数据是否为线性,可以考虑使用 SVC(kernel=‘rbf’) ,也就是高斯核函数的 SVM 分类器。然后对训练好的模型用测试集进行评估。

按照上面的流程,我们来编写下代码,加载数据并对数据做部分的探索:

# 加载数据集,你需要把数据放到目录中 data = pd.read_csv("./data.csv") # 数据探索 # 因为数据集中列比较多,我们需要把dataframe中的列全部显示出来 pd.set_option('display.max_columns', None) print(data.columns) print(data.head(5)) print(data.describe()) 结果 Index(['id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean', 'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean', 'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se', 'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se', 'fractal_dimension_se', 'radius_worst', 'texture_worst', 'perimeter_worst', 'area_worst', 'smoothness_worst', 'compactness_worst', 'concavity_worst', 'concave points_worst', 'symmetry_worst', 'fractal_dimension_worst'], dtype='object') id diagnosis radius_mean texture_mean perimeter_mean area_mean \ 0 842302 M 17.99 10.38 122.80 1001.0 1 842517 M 20.57 17.77 132.90 1326.0 2 84300903 M 19.69 21.25 130.00 1203.0 3 84348301 M 11.42 20.38 77.58 386.1 4 84358402 M 20.29 14.34 135.10 1297.0

接下来,我们就要对数据进行清洗了。

运行结果中,你能看到 32 个字段里,id 是没有实际含义的,可以去掉。diagnosis 字段的取值为 B 或者 M,我们可以用 0 和 1 来替代。另外其余的 30 个字段,其实可以分成三组字段,下划线后面的 mean、se 和 worst 代表了每组字段不同的度量方式,分别是平均值、标准差和最大值。

# 将特征字段分成3组 features_mean= list(data.columns[2:12]) features_se= list(data.columns[12:22]) features_worst=list(data.columns[22:32]) # 数据清洗 # ID列没有用,删除该列 data.drop("id",axis=1,inplace=True) # 将B良性替换为0,M恶性替换为1 data['diagnosis']=data['diagnosis'].map({'M':1,'B':0})

然后我们要做特征字段的筛选,首先需要观察下 features_mean 各变量之间的关系,这里我们可以用 DataFrame 的 corr() 函数,然后用热力图帮我们可视化呈现。同样,我们也会看整体良性、恶性肿瘤的诊断情况。

# 将肿瘤诊断结果可视化 sns.countplot(data['diagnosis'],label="Count") plt.show() # 用热力图呈现features_mean字段之间的相关性 corr = data[features_mean].corr() plt.figure(figsize=(14,14)) # annot=True显示每个方格的数据 sns.heatmap(corr, annot=True) plt.show()

这是运行的结果:

热力图中对角线上的为单变量自身的相关系数是 1。颜色越浅代表相关性越大。所以你能看出来 radius_mean、perimeter_mean 和 area_mean 相关性非常大,compactness_mean、concavity_mean、concave_points_mean 这三个字段也是相关的,因此我们可以取其中的一个作为代表。

那么如何进行特征选择呢?

特征选择的目的是降维,用少量的特征代表数据的特性,这样也可以增强分类器的泛化能力,避免数据过拟合。

我们能看到 mean、se 和 worst 这三组特征是对同一组内容的不同度量方式,我们可以保留 mean 这组特征,在特征选择中忽略掉 se 和 worst。同时我们能看到 mean 这组特征中,radius_mean、perimeter_mean、area_mean 这三个属性相关性大,compactness_mean、daconcavity_mean、concave points_mean 这三个属性相关性大。我们分别从这 2 类中选择 1 个属性作为代表,比如 radius_mean 和 compactness_mean。

这样我们就可以把原来的 10 个属性缩减为 6 个属性,代码如下:

# 特征选择 features_remain = ['radius_mean','texture_mean', 'smoothness_mean','compactness_mean','symmetry_mean', 'fractal_dimension_mean']

对特征进行选择之后,我们就可以准备训练集和测试集:

# 抽取30%的数据作为测试集,其余作为训练集 train, test = train_test_split(data, test_size = 0.3)# in this our main data is splitted into train and test # 抽取特征选择的数值作为训练和测试数据 train_X = train[features_remain] train_y=train['diagnosis'] test_X= test[features_remain] test_y =test['diagnosis']

在训练之前,我们需要对数据进行规范化,这样让数据同在同一个量级上,避免因为维度问题造成数据误差:

# 采用Z-Score规范化数据,保证每个特征维度的数据均值为0,方差为1 ss = StandardScaler() train_X = ss.fit_transform(train_X) test_X = ss.transform(test_X)

最后我们可以让 SVM 做训练和预测了:

# 创建SVM分类器 model = svm.SVC() # 用训练集做训练 model.fit(train_X,train_y) # 用测试集做预测 prediction=model.predict(test_X) print('准确率: ', metrics.accuracy_score(test_y,prediction)) 结果 准确率: 0.9181286549707602

准确率大于 90%,说明训练结果还不错。完整的代码。

sklearn 已经为我们提供了很好的工具,对上节课中讲到的 SVM 的创建和训练都进行了封装,让我们无需关心中间的运算细节。但正因为这样,我们更需要对每个流程熟练掌握,通过实战项目训练数据化思维和对数据的敏感度。

两道思考题:还是这个乳腺癌诊断的数据,请你用 LinearSVC,选取全部的特征(除了 ID 以外)作为训练数据,看下你的分类器能得到多少的准确度呢?另外你对 sklearn 中 SVM 使用又有什么样的体会呢?

语言Python3.6 没有z-score规范化数据以及规范化后两种情况前提预测准确率,使用LinearSVC,选取所有mean属性 import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn import svm from sklearn import metrics from sklearn.preprocessing import StandardScaler #导入数据 path = '/Users/apple/Desktop/GitHubProject/Read mark/数据分析/geekTime/data/' data = pd.read_csv(path + 'breast_cancer/data.csv') #数据探索 pd.set_option('display.max_columns', None) print(data.columns) print(data.head(5)) print(data.describe()) #将特征字段进行分组 features_mean = list(data.columns[2:12]) features_se = list(data.columns[12:22]) features_worst = list(data.columns[22:32]) #数据清洗 #删除ID列 data.drop('id',axis=1,inplace=True) #将良性B替换为0,将恶性替换为1 data['diagnosis'] = data['diagnosis'].map({'B':0,'M':1}) #将肿瘤诊断结果可视化 sns.countplot(data['diagnosis'],label='count') plt.show() #计算相关系数 corr = data[features_mean].corr() plt.figure(figsize=(14,14)) #用热力图呈现相关性,显示每个方格的数据 sns.heatmap(corr,annot=True) plt.show() #特征选择,选择所有的mean数据 feature_remain = ['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean', 'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean'] #抽取30%特征选择作为测试数据,其余作为训练集 train,test = train_test_split(data,test_size=0.3) #抽取特征选择作为训练和测试数据 train_data = train[feature_remain] train_result = train['diagnosis'] test_data = test[feature_remain] test_result = test['diagnosis'] #创建SVM分类器 model = svm.LinearSVC() #用训练集做训练 model.fit(train_data,train_result) #用测试集做预测 prediction = model.predict(test_data) #准确率 print('准确率:', metrics.accuracy_score(prediction,test_result)) #规范化数据,再预估准确率 z_score = StandardScaler() train_data = z_score.fit_transform(train_data) test_data = z_score.transform(test_data) #用新数据做训练 new_model = svm.LinearSVC() new_model.fit(train_data,train_result) #重新预测 new_prediction = new_model.predict(test_data) #准确率 print('准确率:',metrics.accuracy_score(new_prediction,test_result))github:https://github.com/cystanford/breast_cancer_data

此文章为3月Day8学习笔记,内容来源于极客时间《数据分析实战 45 讲》,强烈推荐该课程!



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3