深度学习笔记(三):激活函数和损失函数

您所在的位置:网站首页 激活函数具有哪些性质和特点 深度学习笔记(三):激活函数和损失函数

深度学习笔记(三):激活函数和损失函数

2024-02-11 21:59| 来源: 网络整理| 查看: 265

深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 深度学习笔记(三):激活函数和损失函数 深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(四):循环神经网络的概念,结构和代码注释 深度学习笔记(五):LSTM 深度学习笔记(六):Encoder-Decoder模型和Attention模型

这一部分来探讨下激活函数和损失函数。在之前的logistic和神经网络中,激活函数是sigmoid, 损失函数是平方函数。但是这并不是固定的。事实上,这两部分都有很多其他不错的选项,下面来一一讨论

3. 激活函数和损失函数

3.1 激活函数

关于激活函数,首先要搞清楚的问题是,激活函数是什么,有什么用?不用激活函数可不可以?答案是不可以。激活函数的主要作用是提供网络的非线性建模能力。如果没有激活函数,那么该网络仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价的。因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性映射学习能力。 那么激活函数应该具有什么样的性质呢?

可微性: 当优化方法是基于梯度的时候,这个性质是必须的。 单调性: 当激活函数是单调的时候,单层网络能够保证是凸函数。 输出值的范围: 当激活函数输出值是 有限 的时候,基于梯度的优化方法会更加 稳定,因为特征的表示受有限权值的影响更显著;当激活函数的输出是 无限 的时候,模型的训练会更加高效,不过在这种情况小,一般需要更小的learning rate

从目前来看,常见的激活函数多是分段线性和具有指数形状的非线性函数

3.1.1 sigmoid

f(x)=11+e−x

这里写图片描述 sigmoid 是使用范围最广的一类激活函数,具有指数函数形状,它在物理意义上最为接近生物神经元。此外,(0, 1) 的输出还可以被表示作概率,或用于输入的归一化,代表性的如Sigmoid交叉熵损失函数。

然而,sigmoid也有其自身的缺陷,最明显的就是饱和性。从上图可以看到,其两侧导数逐渐趋近于0

limx−>∞f′(x)=0 具有这种性质的称为 软饱和激活函数。具体的,饱和又可分为左饱和与右饱和。与软饱和对应的是 硬饱和, 即 f′(x)=0,当|x|>c,其中c为常数。 sigmoid 的软饱和性,使得深度神经网络在二三十年里一直难以有效的训练,是阻碍神经网络发展的重要原因。具体来说,由于在后向传递过程中,sigmoid向下传导的梯度包含了一个 f′(x) 因子(sigmoid关于输入的导数),因此一旦输入落入饱和区, f′(x) 就会变得接近于0,导致了向底层传递的梯度也变得非常小。此时,网络参数很难得到有效训练。这种现象被称为梯度消失。一般来说, sigmoid 网络在 5 层之内就会产生梯度消失现象

此外,sigmoid函数的输出均大于0,使得输出不是0均值,这称为偏移现象,这会导致后一层的神经元将得到上一层输出的非0均值的信号作为输入。

3.1.2 tanh

f(x)=1−e−2x1+e−2x

这里写图片描述 tanh也是一种非常常见的激活函数。与sigmoid相比,它的输出均值是0,使得其收敛速度要比sigmoid快,减少迭代次数。然而,从途中可以看出,tanh一样具有软饱和性,从而造成梯度消失。

3.1.3 ReLU,P-ReLU, Leaky-ReLU

f(x)={x,ifx≥00,ifx0时保持梯度不衰减,从而缓解梯度消失问题。这让我们能够直接以监督的方式训练深度神经网络,而无需依赖无监督的逐层预训练。

然而,随着训练的推进,部分输入会落入硬饱和区,导致对应权重无法更新。这种现象被称为“神经元死亡”。与sigmoid类似,ReLU的输出均值也大于0,偏移现象和 神经元死亡会共同影响网络的收敛性。

针对在xx,ifx≥0α(ex−1),ifx



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3