【信号与系统】05

您所在的位置:网站首页 滤波分析 【信号与系统】05

【信号与系统】05

2023-09-15 14:18| 来源: 网络整理| 查看: 265

  本篇将举三个重要的理论或领域,以展示之前信号理论的应用和意义。其中滤波理论和通信系统是非常大的应用领域,这里仅对基础的概念和方法做个介绍,以作入门之用。

1. 滤波系统 1.1 滤波器

  在系统函数的性质中,我们看到信号在时域上的微分、积分、卷积等复杂运算,在频域都变成了代数运算。这说明分析和使用信号的频域,有其天然的优势,也会带来更广泛的应用。当然,频域的操作最终都体现在时域上,注意讨论其相互关系和平衡,有时也是必需的。滤波系统主要就是以信号的频域为操作对象,具体来说就是调整不同基波的波幅、相位,以使输出信号满足具体需求,这样的系统也叫滤波器(Filter)。

  在讨论具体滤波器之前,有必要先说清楚系统对信号的频域究竟产生了什么影响。信号的频谱系数\(X(j\omega)\)是一个复值函数,模\(|X(j\omega)|\)表示基波峰谷的高度,它称为频谱的幅度;角度\(\sphericalangle X(j\omega)\)表示基波初始位置,它称为频谱的相位。LIT系统就是将信号的频谱乘上了系统函数\(H(j\omega)\),把影响按幅度和相位分开讲,\(|H(j\omega)|\)称为系统的增益(gain),\(\sphericalangle H(j\omega)\)叫系统的相移(phase shift)。

  将频谱的幅度、相位分开展示的坐标图(横坐标为\(\omega\))叫模-相图,根据对称性,它们仅需显示正频率部分。为了展示更多的基波频率,以及在系统中经常出现\(\log_{10}\omega\),横坐是对数尺度的。另外,从图中表示相移对相位的影响是简单的,只需在相位上增加相移即可。为了让增益的影响也同样直观,一般把幅度坐标用对数表示,改乘法为加法。其实在现实中,人们对幅度的感知也是对数形式的,比如音量和功率\(\log_{10}|X|^2\)成正比。一般把\(\log_{10}|X|^2\)的单位叫做Bel,更常用的单位分贝(dB)是其十分之一,也即模坐标的值是\(20\log_{10}|X(j\omega)|\)。使用以上所有方法的图示称为Bode图。

  滤波器一般通过修改幅度的方法,选择性保留部分频率的基波、而削弱其它频率的基波,增益恒为\(1\)的叫全通系统。根据保留频率的不同,有很多直观的术语,这里就不一一阐述了,比如低通/高通/带通滤波、以及滤波的截止频率/通带/阻带。另外,系统的相移会造成基波的时移,这在关心时移的场景里(比如图片),同样是不可忽略的影响。所有不期望发生的增益和相移,都被称为信号的失真。根据信号时移的性质,相同的时移\(t_0\)对应相移\(\omega t_0\),相移要和频率成正比信号才不失真,\(t_0\)称为系统的群时延。在一般系统的局部,也有近似的群时延\(\tau(\omega)\)(式(1))。

\[\sphericalangle H(j\omega)=\omega\cdot\tau(\omega)+\phi(\omega),\;\;\tau(\omega)=\dfrac{\text{d}[\sphericalangle H(j\omega)]}{\text{d}\,\omega}\tag{1}\]

1.2 滤波函数

  理想的滤波器的系统函数只有\(0\)和\(1\)两种值,这里就举例不同场景的低通滤波,高通/带通滤波可由其转变而来。为方便叙述,先定义方波函数\(U_T(x)\),它仅在\(|x|\leqslant T\)时取\(1\)。如果设低通滤波器\(X(j\omega)\)为\(U_W(\omega)\),不难得到其单位冲激响应\(x(t)\)(式(2)左)。你可以记忆\(\text{sinc}\,\pi t\overset{F}{\leftrightarrow}U_{\pi}(\omega)\),另外在\(t=0\)处就取周边极限值。利用对偶性,就可以得到方波冲激响应的系统函数(式(2)右)。

\[\dfrac{\sin Wt}{\pi t}\;\overset{F}{\leftrightarrow}\;U_W(\omega);\;\;U_T(t)\;\overset{F}{\leftrightarrow}\;\dfrac{2\sin T\omega}{\omega}\tag{2}\]

  如果记\(\text{sinc}(t)=\sin t/t\),则式(2)左就是\(W\text{sinc}(Wt)/\pi\)。对于比较大的\(W\),它就是\(\text{sinc}(t)\)的横向压缩以及纵向拉升,且能量都集中在原点附近。当\(W\to\infty\)时,可知左式在\(t=0\)处趋于无穷,利用三角积分的值还能算得原点附近的积分趋于\(1\)。这非常类似\(\delta(t)\),其实\(W\to\infty\)时\(U_W(\omega)\)是全通滤波,故它的单位冲激响应就是\(\delta(t)\)(即恒等变换)。同样道理,式(2)右中\(T\to\infty\)时的系统函数近似\(2\pi\delta(\omega)\),这与周期函数的FT相一致。

  为讨论离散信号,对于周期\(T\),先定义周期方波\(U_{\theta}(x)\),它仅在\(|x-kT|\leqslant \theta T/2\)时为\(1\)。对离散信号的FT,设低通滤波器\(X(j\omega)\)为\(U_{\theta}(\omega)\),不难得到其单位脉冲响应\(x(t)\)(式(3)左),其中\(a_0=\theta\)。滤波\(U_{\theta}(\omega)/(2\theta\pi)\)每个周期的积分恒为\(1\),当\(\theta\to 0\)时即为单位冲激串,左边恒有极限\(1/(2\pi)\),与定值的FT一致。然后利用对偶性,也能得到周期方波的FS(式(3)右),以及单位冲激串的FS恒为\(1/T\)。最后还有离散方波的FT,以及周期离散方波的FS(式(4)),这里暂不考虑FS上的滤波。

\[\dfrac{\sin(n\theta\pi)}{n\pi}\;\overset{F}{\leftrightarrow}\;U_{\theta}(\omega);\;\;U_{\theta}(t)\;\overset{FS}{\leftrightarrow}\;\dfrac{\sin(k\theta\pi)}{k\pi}\tag{3}\]

\[U_{n_0}(n)\;\overset{F}{\leftrightarrow}\;\dfrac{\sin[\omega(n_0+1/2)]}{\sin(\omega/2)};\;\;U_{\theta}[n]\;\overset{FS}{\leftrightarrow}\;\dfrac{\sin(k\theta\pi)}{N\sin(k\pi/N)}\tag{4}\]

  一个滤波器不光要考虑频域的效果,还要顾及时域带来的特性,一般用单位阶跃响应考察滤波器的时域特征。它逐步收敛于单位冲激响应的极限值,收敛过程中,有几个参数比较影响系统的好坏。首先上升到稳态的时间,表示系统响应的快慢(或当前信号对后续输出的影响大小),一般越快越好。然后还有进入稳态前的超量(超出稳定值)、以及进入稳态时的震荡,它们都影响了系统的稳定速度,可能降低系统实时性。

  式(2)左的理想滤波不光有超量和震荡,现实中还很难实现(不是有理系统),另外还需要整个输入信号才行(非因果系统),实际上很少使用。非理想滤波在通带和阻带之间没有明显的界限,而是有一定长度的过渡带,并且通带/阻带上都可能有一些起伏,以此可以换来时域更好的特性。一般越小的过渡带、越小的起伏,会带来更大的超量和震荡、以及更长的上升时间,使用中需要注意平衡。更多具体的滤波要到后续课程中讨论了。

2. 采样定理 2.1 采样与插值

  离散时间信号更方便处理,经常要把连续信号\(x(t)\)采样成离散序列\(x[nT]\),为此需要从理论上分析这两种信号的关系。首先自然地想把采样表示成\(x(t)s(t)\),其中\(s(t)\)仅在\(t=nT\)处有非零值\(1\),但由于\(s(t)\)没有正常的分析性质(微积分),频域分析无法进行。为此可以把\(s(t)\)换成单位冲激串函数\(p(t)\)(式(5)左),上一节已经知道它的FS频谱是\(1/T\),故它的FT频谱系数是式(5)右(\(\omega_s=2\pi/T\))。

\[p(t)=\sum_{k\in\Bbb{Z}}\delta(t-kT)\;\overset{F}{\leftrightarrow}\;P(j\omega)=\omega_s\sum_{k\in\Bbb{Z}}\delta(\omega-k\omega_s)\tag{5}\]

  记采样信号为\(x_p(t)=x(t)p(t)\),根据乘法性质知其频谱系数为\(X_p(j\omega)=\dfrac{1}{2\pi}X(j\omega)*P(j\omega)\)。式(5)带入便知,\(X_p(j\omega)\)是多个\(X(j\omega)*\delta(\omega-k\omega_s)/T\)的累加,而后者是\(X(j\omega)/T\)平移\(k\omega_s\)得到,故\(X_p(\omega)\)就是\(X(j\omega)/T\)以\(\omega_s\)为周期的叠加。如果\(x(t)\)的带宽满足\(\omega_c\omega_s\)时,信号恢复会出现不可预知的结果,比如对信号\(\cos\omega_0 t\)低速度采样时,恢复信号的频率总会下降到\(|\omega_s-k\omega_0|\)(自行证明),这个可以解释视频中风扇倒转的现象。

  现在就来讨论从采样函数\(x_p(t)\)恢复出\(x(t)\)的一般性方法,这里\(x_p(t)\)是个数学工具,它代表了采样信息\(x[nT]\)。记恢复系统的单位冲激响应为\(h(t)\),则恢复信号\(x_r(t)\)为式(6)。不难看出,满足\(h(0)=1,h(nT)=0,(n\ne 0)\)的系统都能准确恢复出采样值\(x[nT]\),这时的\(x_r(t)\)就好像\(x[nT]\)的内插函数。采样定理中的低通方波就满足插值条件,其它恢复信号的插值法也要满足插值条件,而且在频谱上都是低通方波的一种近似,即便只是粗略的近似。

\[x_r(t)=x_p(t)*h(t)=\sum_{n\in\Bbb{Z}}x(nT)h(t-nT)\tag{6}\]

  把式(6)看成\(x(nT)\)影响的叠加,选择适当的\(h(t)\)便可以构造不同的恢复系统。比如记\(h_0(t)\)仅在\([0,T)\)上有非零值\(1\),这时\(x_r(t)\)在\([nT,(n+1)T)\)上的值都是\(x(nT)\),这样的阶梯函数叫采样的零阶保持。为了让恢复信号连续,最简单的就是线性插值(相邻两点直线相连,也叫一阶保持),不难得知\(h(t)\)是一个\((-T,T)\)上面的三角形函数。类似地可以有更平滑的高阶保持,那里\(h(t)\)要更平滑,每个点的影响范围也更大。

2.2 数模转换

  连续信号(也叫模拟信号(analog))离散化的优点并不仅限于存储和传输,数字(digital)信号的在处理上有更多有效便捷的方法。所以经常会把模拟信号先做个模-数转换(A/D),通过数字信号处理(DSP)后,再进行数-模转换(D/A)输出模拟信号。在这个过程中,要想使用统一的FT理论就非常困难了,而不得不直接寻找连续FT和离散FT之间的关系,也即冲激采样\(x_p(t)\)能否由脉冲采样\(x_d[n]=x[nT]\)替代。

  把\(x_p(t)\)看成冲激串的叠加,并根据\(\delta(t-nT)\)的(连续FT)频谱,可得到\(x_p(t)\)的频谱为式(7)左。然后直接用离散FT的公式,可得到\(x_d[n]\)的频谱为式(7)右,这里的\(X_d(e^{j\omega})\)已经展开为周期函数。这两个频谱系数虽然来自不同的变换,但却有式(8)左的联系,\(X_d(e^{j\omega})\)是\(X_p(j\omega)\)在横轴拉升\(T\)倍,使周期成为\(2\pi\)。这个结论不仅说明了\(x_p(t)\)和\(x_d[n]\)在信息量上的等价性,还是连续频谱和离散频谱之间的桥梁。

\[X_p(j\omega)=\sum_{n\in\Bbb{Z}}x(nT)e^{-j\omega nT};\;\;X_d(j\omega)=\sum_{n\in\Bbb{Z}}x(nT)e^{-j\omega n}\tag{7}\]

\[X_p(j\omega/T)=X_d(e^{j\omega});\;\;H(j\omega)=H_d(e^{j\omega T}),\,(|\omega|



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3