黄忠亿

您所在的位置:网站首页 清华大学王力 黄忠亿

黄忠亿

#黄忠亿| 来源: 网络整理| 查看: 265

        在多尺度数学物理问题的建模、分析和数值模拟等方面取得了一系列重要创新性成果,并成功应用于材料科学、流体力学、图像处理、金融数学、人工智能、信息论等领域:系统研究了多尺度椭圆/抛物问题的高效数值解法,提出了基于特征展开的有限点法/直接线法,可以自然得到描述问题奇性的具有一致收敛性的高精度数值解;系统研究了多尺度双曲问题的高效数值方法,提出并发展了量身定做有限胞/点方法和基于Bloch分解的(随机Galerkin)算子分裂拟谱方法,计算量比传统方法低一个参数量级以上;对无界区域发展方程、拟线性问题和分数阶问题等提出了准确和高精度人工边界条件。

  在 Mathematics of Computation, Numerische Mathematik, SIAM 系列杂志, Journal of Computational Physics 等国际顶尖杂志和IEEE等国际会议上发表论文60余篇,受到国际同行好评。

主要论著:

[68]杨文莉; 黄忠亿; 基于Huber正则化的红外与可见光图像融合, 计算数学, 2022, 44(3):305-323.

[67]Wang Kong; Zhongyi Huang; Numerical Study of Time-Fractional Telegraph Equations of Transmission Line Modeling, East Asian Journal on Applied Mathematics, 2022, 12(4):821-847.

[66]Miaoyu Dai; Zhongyi Huang; Wei Zhu; Convex Splitting Method for Strongly Anisotropic Solid-State Dewetting Problems in Two Dimensions, East Asian Journal on Applied Mathematics, 2022,12(4):791-820.

[65]Hao Shi; Hanxu Hou; Yunghsiang S. Han; Patrick P. C. Lee; Zhengyi Jiang; Zhongyi Huang; Bo Bai; New Piggybacking Codes with Lower Repair Bandwidth for Any Single-Node Failure, 2022 IEEE International Symposium on Information Theory (ISIT), Aalto University in Espoo, Finland, 2022/06/26-2022/07/01.

[64]Zhiquan Tan; Sian-Jheng Lin; Yunghsiang S. Han; Zhongyi Huang; Bo Bai; Gong Zhang; Data Integrity Check in Distributed Storage Systems, 2022 IEEE International Symposium on Information Theory (ISIT), Aalto University in Espoo, Finland, 2022/06/26-2022/07/01.

[63]Haoyu Wang; Lihui Chai; Zhongyi Huang; Xu Yang; Convergence analysis on seismic tomography for inverse problems of acoustic wave propagation, COMMUN. MATH. SCI, 2022, 20(6):1551-1565.

[62] Approximation of the Shannon Capacity Via Matrix Cone Programming. Wu, ST; Zhou, ZN; Bai, B; Wu, Shi-Tong; Zhou, Zhen-Nan; Huang, Zhong-Yi; Bai, Bo. Journal of the Operations Research Society of China, 2022 (DOI: 10.1007/s40305-022-00408-6)

[61] A Novel AI-Based Framework for AoI-Optimal Trajectory Planning in UAV-Assisted Wireless Sensor Networks. Wu, TH; Liu, JF; Zhang, G; Wu, Tianhao; Liu, Jianfeng; Liu, Juan; Huang, Zhongyi; Wu, Hao; Zhang, Chaorui; Bai, Bo; Zhang, Gong. IEEE transactions on wireless communications., 21(4): 2462-2475, 2022 (DOI: 10.1109/TWC.2021.3112568)

[60] Multi-Phase Segmentation Using Modified Complex Cahn-Hilliard Equations. Wang, XK; Huang, ZY; Zhu, W. Numerical mathematics : theory, methods and applications, 15(2): 442-463, 2022 (DOI: 10.4208/nmtma.OA-2021-0099).

[59] Artificial Boundary Conditions for Time-Fractional Telegraph Equation. Kong, W; Huang, ZY; Numerical mathematics: theory, methods and applications, 15(2): 360-386, 2022 (DOI: 10.4208/nmtma.OA-2021-0067)

[58] Asymptotic analysis and a uniformly convergent numerical method for singular perturbation problems. (with A.N. Liu). East Asian J. Appl. Math. 11 (4): 755–787, 2021.

[57] A Cartesian grid based tailored finite point method for reaction-diffusion equation on complex domains. (with Y.N. Xie, W.J. Ying). Comput. Math. Appl. 97: 298–313, 2021.

[56] An Efficient Piggybacking Design with Lower Repair Bandwidth and Lower Sub-packetization, (with Z.Y. Jiang, H.X. Hou, Y.S. Han, B. Bai, G. Zhang), 2021 IEEE International Symposium on Information Theory, Jul. 12-20, 2021.

[55] An iterative splitting method for pricing European options under the Heston model. (with Hongshan Li), Appl. Math. Comput. 387, 125424, 2020.

[54] Artificial Boundary Method for European Pricing Option Problem, (with H.S. Li), East Asian J. Appl. Math., 10(4): 746-773 , 2020.

[53] Transparent boundary conditions and numerical computation for singularly perturbed telegraph equation on unbounded domain. (with W. Kong), Numer. Math. 145: 345–382, 2020.

[52] Convergence Analysis on Stochastic Collocation Methods for the Linear Schrodinger Equation with Random Inputs, (with Z.Z. Wu), Adv. Appl. Math. Mech., 12: 30-56, 2020.

[51] Image segmentation using the Cahn-Hilliard equation, (with W.L. Yang, W. Zhu), J. Sci. Comput. 79 (2): 1057-1077, 2019.

[50] Asymptotic analysis and numerical method for singularly perturbed eigenvalue problems, (with W. Kong), SIAM J. Sci. Comput., 40 (5): A3293-A3321, 2018.

[49] An Efficient Tailored Finite Point Method for Rician Denoising and Deblurring, (with Wenli Yang, Wei Zhu), Commun. Comput. Phys, 24(4): 1169-1195, 2018.

[48] The direct method of lines for elliptic problems in star-shaped domains, (with Zhizhang Wu, Wei-Cheng Wang, Yi Yang), J. Comput. Appl. Math, 327: 350-361, 2017.

[47] Tailored finite point method for parabolic problems, (with Yi Yang), Comput. Meth. Appl. Math., 16: 543-562, 2016.

[46] A Bloch decomposition-based stochastic Galerkin method for quantum dynamics with a random external potential, (with Zhizhang Wu), J. Comput. Phys. 317: 257-275, 2016.

[45] Monotone finite point method for non-equilibrium radiation diffusion equations, (with Y. Li), BIT Numer. Math. 56: 659-679, 2016.

[44] An equation decomposition based tailored finite point method for linearized incompressible flow in two dimensional space, (with Y. Li, H. Han), Comput. Meth. Appl. Math. 15 (1): 39-58, 2015.

[43] Numerical simulations of X-rays Free Electron Lasers (XFEL), (with P. Antonelli, A. Athanassoulis, P. Markowich), Multiscale Model. Simul. 12 (4): 1607-1621, 2014.

[42] The Tailored finite point method, (with H. Han), Comput. Meth. Appl. Math., 14 (3): 321-345, 2014.

[41] A Semi-discrete tailored finite point method for a class of anisotropic diffusion problems, (with H. Han and W. Ying), Comput. Math. Appl. 65 (11): 1760-1774, 2013.

[40] An Iterative Method based on equation decomposition for the fourth-order singular perturbation problem, (with H. Han and S. Zhang), Numer. Meth. Part. D. E. 29 (3): 961-978, 2013.

[39] A class of nonconforming quadrilateral finite elements for incompressible flow, (with Y. Li), Sci. China Math. 56 (2): 379-393, 2013.

[38] Tailored finite point method based on exponential bases for convection-diffusion-reaction equation, (with H. Han), Math. Comput. 82 (281): 213-226, 2013.

[37] Gaussian Beam Methods for the Dirac Equation in the Semi-classical Regime, (with H. Wu, S. Jin and D. Yin), Commun. Math. Sci. 10 (4): 1301–1315, 2012.

[36] Tailored finite cell method for solving Helmholtz equation in layered heterogeneous medium, (with X. Yang), J. Comput. Math. 30 (4): 381–391, 2012.

[35] An equation decomposition method for the numerical solution of a fourth-order elliptic singular perturbation problem, (with H. Han), Numer. Meth. Part. D. E, 28 (3): 942-953, 2012.

[34] Tailored finite point method for numerical simulation of partial differential equations, In L. Ji et al (eds.), AMS/IP Studies in Advanced Mathematics, Vol 51, Cambridge: AMS/IP. 2012, pp. 593-608.

[33] Tailored finite point method for first order wave equation, (with X. Yang), J. Sci. Comput., 49 (3): 351-366, 2011.

[32] Tailored finite point method for steady-state reaction-diffusion equation, (with H. Han), Comm. Math. Sci., 8 (4): 887-899, 2010.

[31] Bloch Decomposition-Based Gaussian Beam Method for the Schr¨odinger equation with Periodic Potentials, (with S. Jin, H. Wu and X. Yang), J. Comput. Phys., 229 (13): 4869-4883, 2010.

[30] Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics, (with P. Markowich, and C. Sparber), Kinetic and Related Models, 3 (1):181-194, 2010.

[29] Bloch Decomposition method for waves in periodic media, (with S. Jin, P. Markowich, and C. Sparber), Series in Contemporary Applied Mathematics, CAM 15 (2010), Some Problems on Nonlinear Hyperbolic Equations and Applications, pp. 161-188.

[28] Tailored finite point method for a singular perturbation problem with variable coefficients in two dimensions, (with H. Han), J Sci. Comput., 41 (2): 200-220, 2009.

[27] Tailored finite point method for the interface problem, Netw. Heterog. Media, 4 (1): 91-106, 2009.

[26] On the Bloch decomposition based spectral method for wave propagation in periodic media, (with S. Jin, P. Markowich, and C. Sparber), Wave Motion, 46 (1): 15-28, 2009.

[25] A Hybrid Phase-Flow Method for Hamiltonian Systems with Discontinuous Hamiltonians, (with S. Jin, H. Wu), SIAM J Sci. Comput., 31(2):1303-1321, 2008.

[24] A Tailored finite point method for the Helmholtz equation with high wave numbers in heterogeneous medium, (with H. Han), J Comput. Math., 26 (5):728-739, 2008.

[23] A Tailored finite point method for a singular perturbation problem on an unbounded domain, (with H. Han and B. Kellogg), J Sci. Comput., 36 (2): 243-261, 2008.

[22] Numerical simulation of the nonlinear Schroedinger equation with multi-dimensional periodic potentials, (with S. Jin, P. Markowich, and C. Sparber), Multiscale Model. Simul. , 7 (2): 539-564, 2008.

[21] Exact artificial boundary conditions for quasilinear elliptic equation in unbounded domains, (with H. Han and D. Yin), Comm. Math. Sci., 6 (1): 71-82, 2008.

[20] Numerical solutions of Schrodinger equations in R3, (with H. Han and D. Yin), Numer. Meth. For Diff. Eqns, 23 (3): 511-533, 2007.

[19] A Bloch decomposition based split-step pseudo spectral method for quantum dynamics with periodic potentials, (with S. Jin, P. Markowich, and C. Sparber), SIAM J Sci. Comput., 29 (2): 515-538, 2007.

[18] Numerical Simulation for Crack Propagation in Two-Dimensional, (in Chinese) (with Q. Liu), J. Tsinghua University, 46 (9): 1604-1607, 2006.

[17] Wavelet-Galerkin method for reaction-diffusion equation, (in Chinese) (with X. Yang and L. Zhu), J. Tsinghua University, 46 (3): 392-395, 2006.

[16] Numerical Study of a Domain Decomposition Method For a Two-Scale Linear Transport Equation, (with X. Yang, F. Golse, S. Jin), Netw. Heterog. Media, 1(1):143-166, 2006.

[15] A time-splitting spectral method for Maxwell-Dirac system, (with S. Jin, P. Markowich, C. Sparber, C. Zheng), J. Comput. Phys., 208 (2): 761-789, 2005.

[14] Exact artificial boundary conditions for Schrodinger equation in R2, (with H. Han) Comm. Math. Sci., 2 (1): 79-94, 2004.

[13] Heterogeneous multi-scale method: A general methodology for multi-scale modeling, (with W. E and B. Engquist) Phys. Rev. B, 67 (9): 092101, 2003.

[12] High accuracy numerical method of thin-film problems in micromagnetics, J. Comput. Math. 21 (1): 33-40, 2003.

[11] A dynamic atomistic-continuum method for the simulation of crystalline materials, (with W. E), J. Comput. Phys. 182 (1): 234-261, 2002.

[10] Exact and Approximating Boundary Conditions for the Parabolic Problems on Unbounded Domains, (with H. Han), Comput. Math. Appl., 44 (5-6): 655-666, 2002.

[9] A Class of Artificial Boundary Conditions for Heat Equation in Unbounded Domains, (with H. Han), Comput. Math. Appl., 43 (6-7): 889-900, 2002.

[8] The discrete method of separation of variables for composite material problems, (with H. Han), Int. J. Fracture 112 (4): 379-402, 2001.

[7] Matching conditions in atomistic-continuum modeling of materials, (with W. E), Phys. Rev. Lett., 87 (13): 5501-5504, 2001.

[6] Numerical simulations of fracture problems by coupling the FEM and the direct method of lines, (with W. Bao and H. Han), Comput. Method Appl. Mech. Eng., 190 (37-38): 4831-4846, 2001.

[5] Wavelet-Galerkin method for the singular perturbation problem with boundary layers, Tsinghua Science & Technology, 5(4): 365-369, 2000.

[4] The discrete method of separation of variables for computation of stress intensity factors, (with H. Han and W. Bao), Chinese J. Comput. Phys., 17(5): 483-496, 2000.

[3] The direct method of lines for the numerical solutions of interface problem, (with H. Han), Comput. Method Appl. Mech. Eng., 171(1): 61-75, 1999.

[2] A semi-discrete numerical procedure for composite material problems, (with H. Han), Mathematical Sciences and Applications Vol. 12(1999), Advances in numerical mathematics, pp. 35-44.

[1] A semi-discrete method for the solution of elliptic equation with singularities, (with H. Han), CSIAM98 VI: 17 (1998), pp.541-545.



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3