伺服系统震动27问,全部问到点子上了

您所在的位置:网站首页 液压回转装置静止时会自转吗为什么 伺服系统震动27问,全部问到点子上了

伺服系统震动27问,全部问到点子上了

2023-12-13 10:03| 来源: 网络整理| 查看: 265

伺服系统震动27问,全部问到点子上了

时间:2019-02-20 16:59:34来源:微信公众号 伺服与运动控制

导语:​伺服电机出现这种问题有多种原因,一是伺服电机编码器零位不准,也就是编码器零位漂移,二是驱动器刚性不足或参数有问题,三是伺服电机动力线接的可能有问题呀,伺服电机的动力线是不能搞错的,。四是编码器安装问题或编码器自身有问题,需要认真检查,有同样的伺服电机和驱动器最好相互调换一下试试看。

一、数控铣床,打开电源和系统,伺服电机嗡嗡响,响几分钟之后伺服电机会发热,调小刚性后不响了,但铣出来的圆不像圆,该怎样调?

应该是几台驱动器设置的增益不同,造成电机在不同的转速下自激。可以把待测的驱动器与参考驱动器的参数设置成一致再试一下。惯量比看了吗?增益是一方面,但也不要忽略了惯量。

二、伺服驱动器,通过调节三环PID控制伺服电机,噪音比较大,但电机并没有震动,载波频率是10KHZ,电流采样速度是0.1us一次,为什么?

噪音的原因:因为没有做输入脉冲滤波,所以才有那个噪音。

三、电机启动不起来而且噪声大振动大是什么原因?

1、脱开载荷;

2、用手盘动,确认灵活、无异常;

3、空载启动实验;

4、检查负载情况。

先看看是不是动平衡出了问题,这是电流声音,其次看电机轴承,最后是驱动器参数,多数是轴承松懈或坏。

四、电动机运行有异常噪音,什么原因和怎么处理?

1、当定子与转子相擦时,会产生刺耳的“嚓嚓”碰擦声,这多是轴承有故障引起的。应检查轴承,损坏者更新。如果轴承未坏,而发现轴承走内圈或外圈,可镶套或更换轴承与端盖。

2、电动机缺相运行,吼声特别大。可断电再合闸,看是否能再正常起动,如果不能起动,可能有一相熔丝断路。开关及接触器触头一相未接通也会发生缺相。

3、轴承严重缺油时,从轴承室能听到“咝咝”声。应清洗轴承,加新油。

4、风叶碰壳或有杂物,发出撞击声。应校正风叶,清除风叶周围的杂物。

5、笼型转子导条断裂或绕线转子绕组接头断开时,有时高时低的“嗡嗡”声,转速也变慢,电流增大,应检查处理。另外有些电动机转子和定子的长度配合不好,如定子长度比转子长度长得太多,或端盖轴承孔磨损过大,转子产生轴向窜动,也会产生“嗡嗡”的声音。

6、定子绕组首末端接线错误,有低沉的吼声,转速也下降,应检查叫正。

电机噪声很大,是什么原因?如何处理?

原因1:电机内轴承间隙大处理:更换轴承。

原因2:转子扫堂处理:重新修理定子、转子。

原因3:磁钢松动处理方法:重新粘结磁钢。

原因4:电机机体偏转处理:重新调整机体。

原因5:电机转向器表层氧化、烧蚀、油污凹凸不平、换向片松动。处理:清洗换向器或焊牢换向片。

原因6:碳刷松动、碳刷架不正处理:调整。

五、电机有噪声大,什么原因?怎么解决?

依据电机噪声发生的分歧方法,大致可把其噪声分为三大类:

①电磁噪声;②机械噪声;③空气动力噪声。

电磁噪声首要是由气隙磁场效果于定子铁芯的径向重量所发生的。它经过磁轭向别传播,使定子铁芯发生振动变形。其次是气隙磁场的切向重量,它与电磁转矩相反,使铁芯齿部分变形振动。当径向电磁力波与定子的固有频率接近时,就会惹起共振,使振动与噪声大大加强,甚至危及电机的使用寿命。

根据电磁噪声的成因,我们可采用下列办法降低电磁噪声。

⑴尽量采用正弦绕组,削减谐波成份;

⑵选择恰当的气隙磁密,不该太高,但过低又会影响资料的应用率;

⑶选择适宜的槽共同,防止呈现低次力波;

⑷采用转子斜槽,斜一个定子槽距;

⑸定、转子磁路对称平均,迭压严密;

⑹定、转子加工与装配,应留意它们的圆度与同轴度;

⑺留意避开它们的共振频率。

六、新买的电,就是电机和减速机连在一起的那种SEW的,主要是靠PLC和变频器控制,使用的转速很低,大约在25赫兹左右,感觉噪音很大,机械上的主动链轮和被动链轮的角度没有问题,电机底座固定的也很牢固,散热风扇和防护罩没有刮擦,爆闸也是松开的,但是一运转起来噪音非常的大,就好像小区里面变压器发出的声音,为什么?

那就是变频器驱动电机所特有的电磁噪音(吱吱的),没有办法消除掉,但可以减少一点,就是修改变频器参数:把那个载波频率加大一点,噪音就会小一点的。但是加大变频器的载波频率,会导致变频器发热。25赫兹左右低频原本很烦人,刮擦一般音频较高,底座固定的也很牢固要看什么底座,金属板声音会比较大,负载大声音会更大,用螺丝刀顶住耳朵仔细听听音源来自什么地方,要是安装没有什么问题,电机声音大往往是轴承不良,新的应该不至于,可能原本就是这样的,运行正常就行。另外就是控制问题。

七、伺服电机运转时有异响和发热是什么原因?

异响是电机的负载过重,电机的转矩小于负载所需转矩,而电机的堵转转矩大于负载所需转矩。发热就是电机的电流过大(一般发热很正常),若是很烫,或者堵转时间过长很容易烧毁电机(电机退磁)。直白说就是小马拉大车很费力,为了拉动小马就更加的费劲拉车,所以会发热(增加电流),拉车很费劲(异响)。异响是因为伺服电机轴承坏了,发热是电流大,实质是伺服电机为了克服电机轴震动而产生的异常大电流,估计电机坏了,需尽快处理,不然故障会扩大。

八、西门子伺服电机会嗡嗡响是什么问题?

伺服电机出现这种问题有多种原因,一是伺服电机编码器零位不准,也就是编码器零位漂移,二是驱动器刚性不足或参数有问题,三是伺服电机动力线接的可能有问题呀,伺服电机的动力线是不能搞错的,可调换几次看看。四是编码器安装问题或编码器自身有问题,需要认真检查,有同样的伺服电机和驱动器最好相互调换一下试试看。伺服电机有问题,最好找专业人士检修。系统与驱动器故障,电机本身故障;驱动器与实际进给系统的匹配未达到最佳值而引起的,通常只要通过驱动器的速度环增益与积分时间的调节即可进行消除,具体方法为:

1)根据驱动模块及电动机规格,对驱动器的调节器板的S2进行正确的电流调节器设定。

2)将速度调节器的积分时间Tn调节电位器(在驱动器正面),逆时针调至极限(Tn≈39ms)。

3)将速度调节器的比例Kp调节电位器(在驱动器正面),调整至中间位置(Kp≈7~10)。

4)在以上调整后,即可以消除伺服电动机的尖叫声,但此时动态特性较差,还须进行下一步调整。

5)顺时针慢慢旋转积分时间Tn调节电位器,减小积分时间,直到电动机出现振荡声。

6)逆时针稍稍旋转积分时间Tn调节电位器,使电动机振荡声恰好消除。

7)保留以上位置,并作好记录。

本机床经以上调整后,尖叫声即消除,机床恢复正常工作。

九、电机扫堂是什么原因?

电机扫堂就是电机的转子与定子绕组里的硅钢片发生摩擦,一般是轴承坏了,还有可能是轴承走外缘,端盖的轴承位置松动。也有可能是转子走内缘,转子上的轴承位置坏了。最小的一种可能是转子弯曲造成的。轴承磨损或者是轴承座松动会造成的转子偏心。

电机轴上支承圈磨损严重、转子铁心位移,或因其他原因使定子铁心位移,造成电机锥形转子与定子间隙太小发生扫膛。电机严禁“扫膛”,当发生扫膛后,应拆下支承圈进行更换,调整定子转子锥面之间的间隙使之均匀,或送修。

十、交流伺服电机在运行中会出现抖动的现象,问题需怎样解决?

E-1E:指检查不到遥控套准的实际值。

E-2E:指不能传送正常值。

E-3E:指不能检查当前所选单元的状态。

E-4E:指伺服电机当前的运行状态不能被确认。

E-5E:指伺服电机位置电位计不在调整的范围内。

抖动是不正常的吧,可能是由于导轨不顺畅,或者电源不足。把功率调一下,调小点。

十一、伺服控制器一般使用中,都是调节哪些参数的?

不同品牌使用的参数和参数定义都有所不同。以下以安川伺服调试做一总结。

1、安川伺服在低刚性(1~4)负载应用时,惯量比显得非常重要,以同步带结构而论,刚性大约在1~2(甚至1以下),此时惯量比没有办法进行自动调谐,必须使伺服放大器置于非自动调谐状态;

2、惯量比的范围在450~1600之间(具体视负载而定)

3、此时的刚性在1~3之间,甚至可以设置到4;但是有时也有可能在1以下。

4、刚性:电机转子抵抗负载惯性的能力,也就是电机转子的自锁能力,刚性越低,电机转子越软弱无力,越容易引起低频振动,发生负载在到达指定位置后来回晃动。刚性和惯量比配合使用,如果刚性远远高于惯量比匹配的范围,那么电机将发生高频自激振荡,表现为电机发出高频刺耳的声响,这一切不良表现都是在伺服信号(SV-ON)ON并且连接负载的情况下。

5、发生定位到位后越程,而后自动退回的现象的原因:位置环增益设置的过大,主要在低刚性的负载时有此可能。

6、低刚性负载增益的调节:

A、将惯量比设置为600;

B、将Pn110设置为0012;不进行自动调谐

C、将Pn100和Pn102设置为最小;

D、将Pn101和Pn401设置为刚性为1时的参数

E、然后进行JOG运行,速度从100~500;

F、进入软件的SETUP中查看实际的惯量比;

G、将看到的惯量比设置到Pn103中;

H、并且会自动设定刚性,通常此时会被设定为1;

I、然后将SV-ON至于ON,如果没有振荡的声音,此时进行JOG运行,并且观察是否电机产生振荡;如果有振荡,必须减少Pn100数值,然后重复E、F重新设定转动惯量比;重新设定刚性;注意此时刚性应该是1甚至1以下;

J、在刚性设定到1时没有振荡的情况下,逐步加快JOG速度,并且适当减少Pn305、Pn306(加减速时间)的设定值;

K、在多次800rpm以上的JOG运行中没有振荡情况下进入定位控制调试;

L、首先将定位的速度减少至200rpm以内进行调试

M、并且在调试过程中不断减少Pn101参数的设定值;

N、如果调试中发生到达位置后负载出现低频振荡现象,此时适当减少Pn102参数的设定值,调整至最佳定位状态;

O、再将速度以100~180rpm的速度提高,同时观察伺服电机是否有振动现象,如果发生负载低频振荡,则适当减少Pn102的设定值,如果电机发生高频振荡(声音较尖锐)此时适当减少Pn100的设定值,也可以增加Pn101的数值;

P、说明:Pn100速度环增益Pn101速度环积分时间常数Pn102位置环增益Pn103旋转惯量比Pn401转距时间常数。

7、在定位控制中,为了使低刚性结构的负载能够减少机械损伤,因此可以在定位控制的两头加入一定的加减速时间,尤其是加速时间;通常视最高速度的高低,可以从0.5秒设定到2.5秒(指:0到最高速的时间)。

8、电机每圈进给量的计算:

A、电机直接连接滚珠丝杆:丝杆的节距

B、电机通过减速装置(齿轮或减速机)和滚珠丝杆相连:丝杆的节距×减速比(电机侧齿轮齿数除以丝杆处齿轮齿数)

C、电机+减速机通过齿轮和齿条连接:齿条节距×齿轮齿数×减速比

D、电机+减速机通过滚轮和滚轮连接:滚轮(滚子)直径×π×减速比

E、电机+减速机通过齿轮和链条连接:链条节距×齿轮齿数×减速比

F、电机+减速机通过同步轮和同步带连接:同步带齿距×同步带带轮的齿数×(电机侧同步轮的齿数/同步带侧带轮的齿数)×减速比;共有3个同步轮,电机先由电机减速机出轴侧的同步轮传动至另外一个同步轮,再由同步轮传动到同步带直接连接的同步轮。

9、负荷惯量:

A、电机轴侧的惯量需要在电机本身惯量的5~10倍内使用,如果电机轴侧的惯量超过电机本身惯量很大,那么电机需要输出很大的转距,加减速过程时间变长,响应变慢;

B、电机如果通过减速机和负载相连,如果减速比为1/n,那么减速机出轴的惯量为原电机轴侧惯量的(1/n)2

C、惯量比:m=Jl/Jm负载换算到电机轴侧的惯量比电机惯量;

D、Jl

相关资讯

极片裁切快准狠,BD3E交流伺服系统拯救自动化高速...伺服系统的基本概念 机器人用伺服系统技术壁垒机电伺服系统有哪些_机电伺服系统工作原理交流伺服系统的分类及应用场合伺服系统原理及分类冲床周边自动化偏摆送料机应用伊莱斯整套伺服系统...


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3