1.4.1(3) 用空间向量研究直线、平面的垂直

您所在的位置:网站首页 法向量线面平行 1.4.1(3) 用空间向量研究直线、平面的垂直

1.4.1(3) 用空间向量研究直线、平面的垂直

2024-07-04 20:40| 来源: 网络整理| 查看: 265

\({\color{Red}{欢迎到学科网下载资料学习 }}\) 【基础过关系列】高二数学上学期同步知识点剖析精品讲义(人教A版2019) \({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性必修第一册同步巩固,难度2颗星!

基础知识 线线垂直:

设直线\(l_1\),\(l_2\)的方向向量分别是 \(\overrightarrow{u_{1}}\), \(\overrightarrow{u_{2}}\),则要证明\(l_1⊥ l_2\),只需证明 \(\overrightarrow{u_{1}} \perp \overrightarrow{u_{2}}\),即 \(\overrightarrow{u_{1}} \cdot \overrightarrow{u_{2}}=0\) .

 

线面垂直

①(法一)设直线 \(l\)的方向向量是\(\vec{u}\),平面α的法向量是\(\vec{n}\),则要证明\(l⊥α\),只需证明\(\vec{u}||\vec{n}\),即\(\vec{u}=λ \vec{n}\).

②(法二)设直线l的方向向量是\(\vec{u}\),平面\(α\)内的两个相交向量分别为\(\vec{m}\),\(\vec{n}\), 若 \(\left\{\begin{array}{l} \vec{u} \cdot \vec{m}=0 \\ \vec{u} \cdot \vec{n}=0 \end{array}\right.\),则 \(l⊥α\).(即证明\(\vec{u}\)是平面\(α\)的法向量)

 

【例】已知直线\(l\)的方向向量为\(\vec{a}\),平面α的法向量为\(\vec{n}\),若\(\vec{a}=(-1,0,-1)\),\(\vec{n} =(1,0,1)\),则直线\(l\)与平面\(α\)(  )   A.垂直 \(\qquad \qquad\) B.平行\(\qquad \qquad\) C.相交但不垂直 \(\qquad \qquad\) D.位置关系无法确定 解 若\(\vec{a}=(-1,0,-1)\),\(\vec{n} =(1,0,1)\),则\(\vec{a} =-\vec{n}\),\(\vec{a} //\vec{n}\),则直线\(l\)与平面\(α\)垂直,故选:\(A\).  

面面垂直

若平面\(α\)的法向量为 \(\overrightarrow{n_{1}}\),平面β的法向量为 \(\overrightarrow{n_{2}}\),要证\(α⊥β\), 只需证 \(\overrightarrow{n_{1}} \perp \overrightarrow{n_{2}}\),即证 \(\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}=0\).

 

【例】若平面\(α\)与\(β\)的法向量分别是\(\vec{a} =(2,4,-3)\),\(\vec{b} =(-1,2,2)\),判断平面\(α\)与\(β\)的位置关系. 解 \(\vec{a} ⋅\vec{b} =(2,4,-3)(-1,2,2)=-2+8-6=0\),\(∴\vec{a} ⊥\vec{b}\) ,\(∴\)平面\(α\)与平面\(β\)垂直.  

【例】已知平面\(α\),\(β\)的法向量分别为\(\vec{u} =(3,-1,4)\),\(\vec{v} =(-2,3,-5)\),则(  )  A.\(α//β\) \(\qquad \qquad\) B.\(α⊥β\) \(\qquad \qquad\) C.\(α,β\)相交但不垂直 \(\qquad \qquad\)D.\(α,β\)的位置关系不确定 解 平面\(α\),\(β\)的法向量分别为\(\vec{u} =(3,-1,4)\),\(\vec{v} =(-2,3,-5)\), 对于\(A\), \(\because \dfrac{-2}{3} \neq \dfrac{3}{-1} \neq \dfrac{-5}{4}\),\(∴α,β\)不平行,故\(A\)错误; 对于\(B\), \(\vec{u} \cdot \vec{v}=-6-3-20=-29 \neq 0\),\(∴α,β\)不垂直; 对于\(C\),由\(A,B\)得\(α,β\)相交但不垂直,故\(C\)正确; 对于\(D\),α,β相交但不垂直,故\(D\)错误. 故选:\(C\).  

基本方法 【题型1】 对空间向量证明线面垂直方法的理解

【典题1】 给出下列命题: ①直线\(l\)的方向向量为\(\vec{a}=(1,-1,2)\),直线\(m\)的方向向量 \(\vec{b}=\left(2,1,-\dfrac{1}{2}\right)\),则\(l\)与\(m\)垂直; ②直线\(l\)的方向向量 \(\vec{a}=(0,1,-1)\),平面\(α\)的法向量 \(\vec{n}=(1,-1,-1)\),则\(l⊥α\); ③平面\(α\)、\(β\)的法向量分别为 \(\overrightarrow{n_{1}}=(0,1,3)\), \(\overrightarrow{n_{2}}=(1,0,2)\),则\(α//β\); ④平面\(α\)经过三点\(A(1,0,-1)\),\(B(0,1,0)\),\(C(-1,2,0)\),向量 \(\vec{n}=(1, u, t)\)是平面\(α\)的法向量,则\(u+t=1\). 其中真命题的是\(\underline{\quad \quad}\).(把你认为正确命题的序号都填上) 解析 对于①,\(∵\vec{a} =(1,-1,2)\), \(\vec{b}=\left(2,1,-\dfrac{1}{2}\right)\), \(\therefore \vec{a} \cdot \vec{b}=1 \times 2-1 \times 1+2 \times\left(-\dfrac{1}{2}\right)=0\), \(\therefore \vec{a} \perp \vec{b}\), \(∴\)直线\(l\)与\(m\)垂直,①正确; 对于②, \(\vec{a}=(0,1,-1)\), \(\vec{n}=(1,-1,-1)\), \(∴\vec{a}⋅\vec{n}=0×1+1×(-1)+(-1)×(-1)=0\), \(∴\vec{a}⊥\vec{n}\),\(∴l//α\)或\(l⊂α\),②错误; 对于③, \(\because \overrightarrow{n_{1}}=(0,1,3)\), \(\overrightarrow{n_{2}}=(1,0,2)\), \(\therefore \overrightarrow{n_{1}}\)与 \(\overrightarrow{n_{2}}\)不共线, \(∴α//β\)不成立,③错误; 对于④,\(∵\)点\(A(1,0,-1)\),\(B(0,1,0)\),\(C(-1,2,0)\), \(\therefore \overrightarrow{A B}=(-1,1,1)\), \(\overrightarrow{B C}=(-1,1,0)\), 向量\(\vec{n}=(1,u,t)\)是平面 的法向量, \(\therefore\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A B}=0 \\ \vec{n} \cdot \overrightarrow{B C}=0 \end{array}\right.\),即 \(\left\{\begin{array}{l} -1+u+t=0 \\ -1+u=0 \end{array}\right.\);则\(u+t=1\),④正确. 综上,以上真命题的序号是①④.  

巩固练习

1.已知直线\(l_1\)的方向向量\(\vec{m}=(2,m,1)\),\(l_2\)的方向向量 \(\vec{n}=\left(1, \dfrac{1}{2}, 2\right)\),且\(l_2⊥l_1\),则\(m=\)\(\underline{\quad \quad}\).  

2.已知直线\(l\)的一个方向向量\(\vec{a}=(1,2,m)\),平面\(α\)的一个法向量 \(\vec{n}=(-1,-2,3)\),若\(l⊥α\),则\(m=\)\(\underline{\quad \quad}\) .  

3.已知平面\(α\)的一个法向量\(\vec{a}=(x,1,-2)\),平面β的一个法向量 \(\vec{b}=\left(-1, y, \dfrac{1}{2}\right)\),若\(α⊥β\),则\(y-x=\)\(\underline{\quad \quad}\).  

参考答案

答案 \(-8\) **解析 **\(∵\)直线\(l_1\)的方向向量\(\vec{m}=(2,m,1)\),\(l_2\)的方向向量 \(\vec{n}=\left(1, \dfrac{1}{2}, 2\right)\),且\(l_2⊥l_1\), \(\therefore \vec{m} \cdot \vec{n}=2+\dfrac{1}{2} m+2=0\),解得\(m=-8\).

答案 \(-3\) 解析 \(∵\)直线\(l\)的一个方向向量\(\vec{a}=(1,2,m)\),平面\(α\)的一个法向量 \(\vec{n}=(-1,-2,3)\),\(l⊥α\), \(∴\vec{a}//\vec{n}\), \(\therefore \dfrac{-1}{1}=\dfrac{-2}{2}=\dfrac{3}{m}\),解得\(m=-3\).

答案 \(1\) 解析 \(∵\)面\(α\)的一个法向量\(\vec{a}=(x,1,-2)\),平面β的一个法向量 \(\vec{b}=\left(-1, y, \dfrac{1}{2}\right)\),\(α⊥β\), \(\therefore \vec{a} \cdot \vec{b}=-x+y-1=0\),解得\(y-x=1\).

【题型2】证明直线、平面垂直关系

【典题1】 在长方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E\),\(F\)分别是棱\(BC\),\(CC_1\)上的点,\(CF=AB=2CE\), \(AB:AD:AA_1=1:2:4\).证明\(AF⊥\)平面\(A_1 ED\). image.png 解析 如图所示,建立空间直角坐标系,点\(A\)为坐标原点, image.png 设\(AB=1\),依题意得\(D(0,2,0)\),\(F(1,2,1)\),\(A_1 (0,0,4)\), \(E\left(1, \dfrac{3}{2}, 0\right)\) 已知 \(\overrightarrow{A F}=(1,2,1)\), \(\overrightarrow{E A_{1}}=\left(-1,-\dfrac{3}{2}, 4\right)\), \(\overrightarrow{E D}=\left(-1, \dfrac{1}{2}, 0\right)\), 于是 \(\overrightarrow{A F} \cdot \overrightarrow{E A_{1}}=0\), \(\overrightarrow{A F} \cdot \overrightarrow{E D}=0\). 因此\(AF⊥EA_1\),\(AF⊥ED\),又\(EA_1∩ED=E\), 所以\(AF⊥\)平面\(A_1 ED\).  

【典题2】在如图所示的几何体中,四边形\(ABCD\)是正方形,\(MA⊥\)平面\(ABCD\),\(PD//MA\),\(E\),\(G\),\(F\)分别为\(MB\),\(PB\),\(PC\)的中点,且\(AD=PD=2MA\).求证:平面\(EFG⊥\)平面\(PDC\). image.png 解析 以\(A\)为原点,向量 \(\overrightarrow{D A}, \overrightarrow{A B}, \overrightarrow{A M}\)分别为\(x\)轴、\(y\)轴、\(z\)轴的正方向,如图建立坐标系, image.png 设\(AM=1\),则\(AD=AB=PD=2\), 则\(B(0,2,0)\),\(C(-2,2,0)\),\(D(-2,0,0)\),\(P(-2,0,2)\), \(M(0,0,1)\), 则 \(\mathrm{E}\left(0,1, \dfrac{1}{2}\right)\), \(\mathrm{G}(-1,1,1)\), \(\mathrm{F}(-2,1,1)\), \(\therefore \overrightarrow{E G}=\left(-1,0, \dfrac{1}{2}\right)\), \(\overrightarrow{G F}=(-1,0,0)\), 设平面\(EFG\)的法向量 \(\vec{m}=(x, y, z)\), 则 \(\overrightarrow{E G} \cdot \vec{m}=-x+\dfrac{1}{2} z=0\)且 \(\overrightarrow{G F} \cdot \vec{m}=-x=0\), 取\(y=1\),则\(x=z=0\), \(\therefore \vec{m}=(0,1,0)\), 易证面\(PDC\)的法向量为 \(\overrightarrow{D A}=\left( 2, 0, 0\right)\), \(\because \vec{m} \cdot \overrightarrow{D A}=2 \times 0+0 \times 1+0 \times 0=0\) \(\therefore \vec{m} \perp \overrightarrow{D A}\), \(∴\)平面\(EFG⊥\)平面\(PDC\).  

巩固练习

1.已知三棱锥\(P-ABC\)中,\(PA⊥\)面\(ABC\),\(AB⊥AC\), \(\mathrm{PA}=\mathrm{AC}=\dfrac{1}{2} A B\),\(N\)为\(AB\)上一点,\(AB=4AN\),\(M\),\(S\)分别为\(PB\),\(BC\)的中点.证明:\(CM⊥SN\). image.png  

2.如图,已知四棱锥\(P-ABCD\)的底面\(ABCD\)为等腰梯形,\(AB∥DC\),\(AC⊥BD\),\(AC\)与\(BD\)相交于点\(O\),且顶点\(P\)在底面上的射影恰为\(O\)点,又\(BO=2\), \(P O=\sqrt{2}\),\(PB⊥PD\).设点\(M\)在棱\(PC\)上,问\(M\)点在什么位置时,\(PC⊥\)平面\(BMD\). image.png  

3 在如图所示的几何体中,面\(CDEF\)为正方形,面\(ABCD\)为等腰梯形,\(AB∥CD\),\(AB=2BC\),\(∠ABC=60^∘\),\(AC⊥FB\). (1)求证:\(AC⊥\)平面\(FBC\); (2)线段\(ED\)上是否存在点\(Q\),使平面\(EAC⊥\)平面\(QBC\)?证明你的结论. image.png  

参考答案

证明 设\(PA=1\),以\(A\)为原点,射线\(AB,AC,AP\)分别为\(x,y,z\)轴正向建立空间直角坐标系如图, image.png 则\(P(0,0,1)\),\(C(0,1,0)\),\(B(2,0,0)\), \(M\left(1,0, \dfrac{1}{2}\right)\), \(N\left(\dfrac{1}{2}, 0,0\right)\), \(S\left(1, \dfrac{1}{2}, 0\right)\), \(\overrightarrow{C M}=\left(1,-1, \dfrac{1}{2}\right)\), \(\overrightarrow{S N}=\left(-\dfrac{1}{2},-\dfrac{1}{2}, 0\right)\), 因为 \(\overrightarrow{C M} \cdot \overrightarrow{S N}=-\dfrac{1}{2}+\dfrac{1}{2}+0=0\), 所以\(CM⊥SN\).  

答案 \(M\)点是靠近\(C\)点的三等分点 解析 \(∵PO⊥\)平面\(ABCD\),\(∴PO⊥BD\) 又\(PB⊥PD\),\(BO=2\), \(P O=\sqrt{2}\) 由平面几何知识得:\(OD=OC=1\),\(BO=AO=2\) 以\(O\)为原点,\(OA\),\(OB\),\(OP\)分别为\(x,y,z\) 轴建立如图所示的空间直角坐标系, 则各点坐标为\(O(0,0,0)\),\(A(2,0,0)\),\(B(0,2,0)\),\(C(-1,0,0)\),\(D(0,-1,0)\), \(P(0,0, \sqrt{2})\) 设\(M(x_0,0,z_0 )\),由于\(P,M,C\)三点共线,得 \(\overrightarrow{P M} \| \overrightarrow{P C}\), 即 \(\left(x_{0}, 0, z_{0}-\sqrt{2}\right) \|(-1,0,-\sqrt{2})\) 由对应系数成比例有 \(z_{0}=\sqrt{2} x_{0}+\sqrt{2}\),则 \(M\left(x_{0}, 0, \sqrt{2} x_{0}+\sqrt{2}\right)\) \(∵PC⊥\)平面\(BMD\), \(\therefore \overrightarrow{P C} \perp \overrightarrow{B M}\), \(\therefore(-1,0,-\sqrt{2}) \cdot\left(x_{0},-2, \sqrt{2} x_{0}+\sqrt{2}\right)=0\),得 \(x_{0}=-\dfrac{2}{3}\), 所以 \(z_{0}=\dfrac{\sqrt{2}}{3}\), \(\therefore M\left(-\dfrac{2}{3}, 0, \dfrac{\sqrt{2}}{3}\right)\), 故 \(\dfrac{P M}{M C}=2\),则\(M\)点是靠近\(C\)点的三等分点. image.png  

答案 (1)略 (2)不存在 解析 (1)证明:\(∵AB=2BC\),\(∠ABC=60°\), 在\(△ABC\)中,由余弦定理可得\(AC^2=AB^2+BC^2-2AB\cdot BC\cos60°=3BC^2\), \(∴AC^2+BC^2=4BC^2=AB^2\),\(∴∠ACB=90°\). \(∴AC⊥BC\). 又\(∵AC⊥FB\),\(FB∩BC=B\), \(∴AC⊥\)平面\(FBC\). (2)线段\(ED\)上不存在点\(Q\),使平面\(EAC⊥\)平面\(QBC\). 证明如下: 因为\(AC⊥\)平面\(FBC\),所以\(AC⊥FC\). 因为\(CD⊥FC\),所以\(FC⊥\)平面\(ABCD\). 所以\(CA,CF,CB\)两两互相垂直,如图建立的空间直角坐标系\(C-xyz\). image.png 在等腰梯形\(ABCD\)中,可得\(CB=CD\). 设\(BC=1\), 所以\(C(0,0,0)\), \(A(\sqrt{3}, 0,0)\),\(B(0,1,0)\), \(D\left(\dfrac{\sqrt{3}}{2},-\dfrac{1}{2}, 0\right)\), \(E\left(\dfrac{\sqrt{3}}{2},-\dfrac{1}{2}, 1\right)\). 所以\(\overrightarrow{C E}=\left(\dfrac{\sqrt{3}}{2},-\dfrac{1}{2}, 1\right)\), \(\overrightarrow{C A}=(\sqrt{3}, 0,0)\), \(\overrightarrow{C B}=(0,1,0)\). 设平面\(EAC\)的法向量为 \(\vec{n}=(x, y, z)\),则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{C E}=0 \\ \vec{n} \cdot \overrightarrow{C A}=0 \end{array}\right.\), 所以 \(\left\{\begin{array}{l} \dfrac{\sqrt{3}}{2} x-\dfrac{1}{2} y+z=0 \\ \sqrt{3} x=0 \end{array}\right.\),取\(z=1\),得\(\vec{n}=(0,2,1)\). 假设线段\(ED\)上存在点\(Q\), 设 \(Q\left(\dfrac{\sqrt{3}}{2},-\dfrac{1}{2}, t\right)(0 \leq t \leq 1)\),所以 \(\overrightarrow{C Q}=\left(\dfrac{\sqrt{3}}{2},-\dfrac{1}{2}, t\right)\). 设平面\(QBC\)的法向量为\(\vec{m}=(a,b,c)\),则 \(\left\{\begin{array}{l} \vec{m} \cdot \overrightarrow{C B}=0 \\ \vec{m} \cdot \overrightarrow{C Q}=0 \end{array}\right.\) 所以 \(\left\{\begin{array}{l} b=0 \\ \dfrac{\sqrt{3}}{2} a-\dfrac{1}{2} b+t c=0 \end{array}\right.\),取\(c=1\),得 \(\vec{m}=\left(-\dfrac{2 t}{\sqrt{3}}, 0,1\right)\). 要使平面\(EAC⊥\)平面\(QBC\),只需 \(\vec{m} \cdot \vec{n}=0\), 即 \(-\dfrac{2}{\sqrt{3}} t \times 0+0 \times 2+1 \times 1=0\),此方程无解. 所以线段\(ED\)上不存在点\(Q\),使平面\(EAC⊥\)平面\(QBC\).  

分层练习 【A组---基础题】

1 已知 \(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\)分别为直线\(l_1\),\(l_2\)的方向向量(\(l_1\),\(l_2\)不重合), \(\overrightarrow{n_{1}}, \overrightarrow{n_{2}}\)分别为平面\(α\),\(β\)的法向量(\(α\),\(β\)不重合),则下列说法中不正确的是(  )   A. \(\overrightarrow{v_{1}} / / \overrightarrow{v_{2}} \Leftrightarrow l_{1} / / l_{2}\) \(\qquad \qquad\) B. \(\overrightarrow{v_{1}} \perp \overrightarrow{n_{1}} \Leftrightarrow l_{1} / / \alpha\) \(\qquad \qquad\)C. \(\overrightarrow{n_{1}} \perp \overrightarrow{n_{2}} \Leftrightarrow \alpha \perp \beta\) \(\qquad \qquad\) D. \(\overrightarrow{n_{1}} // \overrightarrow{n_{2}} \Leftrightarrow \alpha / / \beta\)  

2 若直线\(l\)的方向向量为\((2,1,m)\),平面\(α\)的法向量为 \(\left(1, \dfrac{1}{2}, 2\right)\),且\(l⊥α\),则\(m=\)(  )  A.\(2\) \(\qquad \qquad\) B.\(3\) \(\qquad \qquad\) C.\(4\) \(\qquad \qquad\) D.\(5\)  

3已知平面\(α\)内的两个向量 \(\vec{a}=(1,1,1)\), \(\vec{b}=(0,2,-1)\),且 \(\vec{c}=m \vec{a}+n \vec{b}+(4,-4,1)\).若 \(\vec{c}\)为平面\(α\)的法向量,则\(m,n\)的值分别为(  )  A.\(-1,2\) \(\qquad \qquad\) B.\(1,-2\)\(\qquad \qquad\) C.\(1,2\) \(\qquad \qquad\) D.\(-1,-2\)   4已知平面\(α\)的法向量是 \(\vec{a}=(3 x-1,-1, x+5)\),平面\(β\)的法向量是 \(\vec{b}=\left(x+1, x^{2}+3,-x\right)\),且\(α⊥β\),则实数\(x\)的值为\(\underline{\quad \quad}\).

5在边长是\(2\)的正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E\),\(F\)分别为\(AB\),\(A_1 C\)的中点.应用空间向量方法求解下列问题. (1)求\(EF\)的长;(2)证明:\(EF∥\)平面\(AA_1 D_1 D\);(3)证明:\(EF⊥\)平面\(A_1 CD\). image.png  

6 如图,在直三棱柱\(ABC-A_1 B_1 C_1\)中,\(AB⊥AC\),\(AB=AC=AA_1\),\(D\)为\(BC\)的中点. (1)证明:\(A_1 B//\)平面\(ADC_1\);(2)证明:平面\(ADC_1⊥\)平面\(BB_1 C_1 C\). image.png  

7 如图\(1\),在\(Rt△ABC\)中,\(∠C=90°\),\(BC=3\),\(AC=6\),\(D\),\(E\)分别是\(AC\),\(AB\)上的点,且\(DE∥BC\),\(DE=2\),将\(△ADE\)沿\(DE\)折起到\(△A_1 DE\)的位置,使\(A_1 C⊥CD\),如图\(2\). (1)求证:\(A_1 C⊥\)平面\(BCDE\); (2)线段\(BC\)上是否存在点\(P\),使平面\(A_1 DP\)与平面\(A_1 BE\)垂直?说明理由. image.png    

参考答案

答案 \(B\) 解析 对于选项\(A\):因为\(l_1\),\(l_2\)不重合,所以 \(\overrightarrow{v_{1}} / / \overrightarrow{v_{2}} \Leftrightarrow l_{1} / / l_{2}\),故选项\(A\)正确, 对于选项\(B\):若 \(\overrightarrow{v_{1}} \perp \overrightarrow{n_{1}}\),则有可能\(l_1⊆α\),故选项\(B\)错误, 对于选项\(C\):因为\(α\),\(β\)不重合,所以 \(\overrightarrow{n_{1}} \perp \overrightarrow{n_{2}} \Leftrightarrow \alpha \perp \beta\),故选项\(C\)正确, 对于选项\(D\):因为\(α\),\(β\)不重合,所以 \(\overrightarrow{n_{1}} // \overrightarrow{n_{2}} \Leftrightarrow \alpha / / \beta\),故选项\(D\)正确, 故选:\(B\).

答案 \(C\) 解析 \(∵\)直线\(l\)的方向向量为\((2,1,m)\),平面\(α\)的法向量为 \(\left(1, \dfrac{1}{2}, 2\right)\),且\(l⊥α\), \(∴l\)的方向向量为\((2,1,m)\)与平面\(α\)的法向量为 \(\left(1, \dfrac{1}{2}, 2\right)\)平行, \(\therefore(2,1, m)=\lambda\left(1, \dfrac{1}{2}, 2\right)\). \(\therefore\left\{\begin{array}{l} 2=\lambda \\ 1=\dfrac{1}{2} \lambda \\ m=2 \lambda \end{array}\right.\),解得\(m=4\).故选:\(C\).

答案 \(A\) 解析 \(∵\vec{a}=(1,1,1)\), \(\vec{b}=(0,2,-1)\), \(\therefore \vec{c}=m \vec{a}+n \vec{b}+(4,-4,1)=(m, m, m)+(0,2 n,-n)+(4,-4,1)\) \(=(m+4,m+2n-4,m-n+1)\). 由 \(\vec{c}\)为平面\(α\)的法向量,得 \(\left\{\begin{array}{l} \vec{c} \cdot \vec{a}=3 m+n+1=0 \\ \vec{c} \cdot \vec{b}=m+5 n-9=0 \end{array}\right.\),解得 \(\left\{\begin{array}{l} m=-1 \\ n=2 \end{array}\right.\). 故选:\(A\).

答案 \(-1\)或\(4\) 解析 \(∵α⊥β\), \(\therefore \vec{a} \perp \vec{b}\), \(\therefore \vec{a} \cdot \vec{b}=(3 x-1)(x+1)-\left(x^{2}+3\right)-x(x+5)=0\),解得\(x=-1\)或\(4\).

答案 (1) \(\sqrt{2}\) (2)略 (3)略 解析 (1)如图建立空间直角坐标系, 则\(A_1 (2,0,2)\),\(A(2,0,0)\),\(B(2,2,0)\),\(C(0,2,0)\),\(D_1 (0,0,2)\),\(D(0,0,0)\), \(∵E,F\)分别为\(AB,A_1 C\)的中点,\(∴E(2,1,0)\),\(F(1,1,1)\), \(\overrightarrow{E F}=(-1,0,1)\), \(\therefore|\overrightarrow{E F}|=\sqrt{1+0+1}=\sqrt{2}\). (2) \(\because \overrightarrow{A D}_{1}=(-2,0,2)=2 \overrightarrow{E F}\),\(∴EF//AD_1\), 又\(AD_1⊂\)平面\(AA_1 D_1 D\),\(EF⊄\)平面\(AA_1 D_1 D\), \(∴EF∥\)平面\(AA_1 D_1 D\). (3) \(\overrightarrow{C D}=(0,-2,0)\), \(\overrightarrow{A_{1} D}=(-2,0,-2)\), \(\because \overrightarrow{C D} \cdot \overrightarrow{E F}=0\), \(\overrightarrow{E F} \cdot \overrightarrow{A_{1} D}=0\), \(∴EF⊥CD\),\(EF⊥A_1 D\),又\(CD∩A_1 D=D\), \(∴EF⊥\)平面\(A_1 CD\). image.png

证明 (1)证明:\(∵\)在直三棱柱\(ABC-A_1 B_1 C_1\)中,\(AB⊥AC\), \(∴\)以\(A_1\)为原点,\(A_1 C_1\)为\(x\)轴,\(A_1 B_1\)为\(y\)轴,\(A_1 A\)为\(z\)轴,建立空间直角坐标系, image.png 设\(AB=AC=AA_1=2\), \(A_1 (0,0,0)\),\(B(0,2,2)\),\(A(0,0,2)\),\(C(2,0,2)\),\(D(1,1,2)\),\(C_1 (2,0,0)\), \(\overrightarrow{A_{1} B}=(0,2,2)\), \(\overrightarrow{A D}=(1,1,0)\), \(\overrightarrow{A C}_{1}=(2,0,-2)\), 设平面\(ADC_1\)的法向量 \(\vec{n}=(x, y, z)\), 则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A D}=x+y=0 \\ \vec{n} \cdot \overrightarrow{A C_{1}}=2 x-2 z=0 \end{array}\right.\),取\(x=1\),得\(\vec{n}=(1,-1,1)\), \(\because \vec{n} \cdot \overrightarrow{A_{1} B}=0-2+2=0\),且\(A_1 B⊄\)平面\(ADC_1\), \(∴A_1 B∥\)平面\(ADC_1\). (2)证明: \(\because \overrightarrow{D C}=(1,-1,0)\), \(\overrightarrow{D C}_{1}=(1,-1,-2)\), 设平面\(BB_1 C_1 C\)的法向量 \(\vec{m}=(a, b, c)\), 则 \(\left\{\begin{array}{l} \vec{m} \cdot \overrightarrow{D C}=a-b=0 \\ \vec{m} \cdot \overrightarrow{D C_{1}}=a-b-2 c=0 \end{array}\right.\),取\(a=1\),得\(\vec{m}=(1,1,0)\), 又平面\(ADC_1\)的法向量 \(\vec{n}=(1,-1,1)\), \(\therefore \vec{n} \cdot \vec{m}=1-1+0=0\), \(∴\)平面\(ADC_1⊥\)平面\(BB_1 C_1 C\).

答案 (1) 略 (2) 不存在 解析 (1)证明:\(∵CD⊥DE\),\(A_1 D⊥DE\),\(CD∩A_1 D=D\), \(∴DE⊥\)平面\(A_1 CD\), 又\(∵A_1 C⊂\)平面\(A_1 CD\),\(∴A_1 C⊥DE\), 又\(A_1 C⊥CD\),\(CD∩DE=D\), \(∴A_1 C⊥\)平面\(BCDE\) (2)解:如图建系, image.png 则\(C(0,0,0)\),\(D(-2,0,0)\), \(A_{1}(0,0,2 \sqrt{3})\),\(B(0,3,0)\),\(E(-2,2,0)\), 设线段\(BC\)上存在点\(P\),设\(P\)点坐标为\((0,a,0)\),则\(a∈[0,3]\), \(\therefore \overrightarrow{A_{1} P}=(0, a,-2 \sqrt{3})\), \(\overrightarrow{D P}=(2, a, 0)\), 设平面\(A_1 DP\)法向量为 \(\overrightarrow{n_{1}}=\left(x_{1}, y_{1}, z_{1}\right)\), 则 \(\left\{\begin{array}{l} a y_{1}-2 \sqrt{3} z_{1}=0 \\ 2 x_{1}+a y_{1}=0 \end{array}\right.\), \(\therefore\left\{\begin{array}{l} z_{1}=\dfrac{\sqrt{3}}{6} a y_{1} \\ x_{1}=-\dfrac{1}{2} a y_{1} \end{array}\right.\), \(\therefore \overrightarrow{n_{1}}=(-3 a, 6, \sqrt{3} a)\), 假设平面\(A_1 DP\)与平面\(A_1 BE\)垂直,则 \(\sqrt{n_{1}} \cdot \vec{n}=0\), \(∴3a+12+3a=0\),\(6a=-12\),\(a=-2\) \(∵0≤a≤3\), \(∴\)不存在线段\(BC\)上存在点\(P\),使平面\(A_1 DP\)与平面\(A_1 BE\)垂直.

【B组---提高题】

1 已知直线\(l\)的一个方向向量为\(\vec{a}=(m,1,3)\),平面\(α\)的一个法向量为\(\vec{b}=(-2,n,1)\),现给出下列结论: ①若\(l//α\),则\(2m-n=3\);②若\(l⊥α\),则\(2m-n=3\); ③若\(l//α\),则\(mn+2=0\);④若\(l⊥α\),则\(mn+2=0\). 其中所在正确结论的序号是(  )  A.①③ \(\qquad \qquad\) B.①④ \(\qquad \qquad\) C.②③ \(\qquad \qquad\) D.②④  

2 (多选)已知点\(P\)是平行四边形\(ABCD\)所在的平面外一点,如果 \(\overrightarrow{A B}=(2,-1,-4)\), \(\overrightarrow{A D}=(4,2,0)\), \(\overrightarrow{A P}=(-1,2,-1)\),下列结论正确的有 (  )  A.\(AP⊥AB\) \(\qquad \qquad\) B.四边形\(ABCD\)为矩形 \(\qquad \qquad\) C. \(\overrightarrow{A P}\)是平面\(ABCD\)的一个法向量 \(\qquad \qquad\) D. \(\overrightarrow{A P} / / \overrightarrow{B D}\)  

3 在三棱锥\(P-ABC\)中,\(PB⊥\)平面\(ABC\),\(AB⊥BC\),\(AB=PB=2\), \(B C=2 \sqrt{3}\),\(E、G\)分别为\(PC\)、\(PA\)的中点.   (1)求证:平面\(BCG⊥\)平面\(PAC\);   (2)在线段\(AC\)上是否存在一点\(N\),使\(PN⊥BE\)?证明你的结论. image.png    

参考答案

答案 \(B\) 解析 直线\(l\)的一个方向向量为\(\vec{a}=(m,1,3)\),平面\(α\)的一个法向量为 \(\vec{b}=(-2,n,1)\), 对于①,若\(l//α\),则\(\vec{a}⋅\vec{b}=-2m+n+3=0\),\(∴2m-n=3\),故①正确; 对于②,若\(l⊥α\),则\(\vec{a}//\vec{b}\), \(\therefore \dfrac{m}{-2}=\dfrac{1}{n}=\dfrac{3}{1}\),解得 \(m=-6, n=\dfrac{1}{3}\), \(\therefore 2 m-n=-\dfrac{37}{3}\),故②错误; 对于③,若\(l//α\),则\(\vec{a}⋅\vec{b}=-2m+n+3=0\),\(∴n=2m-3\), \(m n+2=2 m^{2}-3 m+2=2\left(m-\dfrac{3}{4}\right)^{2}+\dfrac{7}{8} \geqslant \dfrac{7}{8}\),故\(C\)错误; ④若\(l⊥α\),则 \(\dfrac{m}{-2}=\dfrac{1}{n}=\dfrac{3}{1}\),解得 \(m=-6, n=\dfrac{1}{3}\),\(∴mn+2=0\),故④正确. 故选:\(B\)

答案 \(AC\) 解析 对于\(A\), \(\overrightarrow{A B} \cdot \overrightarrow{A P}=2 \times(-1)+(-1) \times 2+(-4) \times(-1)=0\), 所以 \(\overrightarrow{A B} \perp \overrightarrow{A P}\),即\(AP⊥AB\),故选项\(A\)正确; 对于\(B\),题中没有相关条件可以判断四边形\(ABCD\)是否为矩形,故选项\(B\)错误; 对于\(C\), \(\overrightarrow{A P} \cdot \overrightarrow{A D}=(-1) \times 4+2 \times 2+(-1) \times 0=0\),所以 \(\overrightarrow{A P} \perp \overrightarrow{A D}\), 又 \(\overrightarrow{A B} \perp \overrightarrow{A P}\),所以 \(\overrightarrow{A P}\)是平面\(ABCD\)的一个法向量,故选项\(C\)正确; 对于\(D\),因为 \(\overrightarrow{A P}\)是平面\(ABCD\)的一个法向量,则 \(\overrightarrow{A P} \perp \overrightarrow{B D}\),故选项\(D\)错误. 故选:\(AC\).

答案 (1) 略 (2) 存在 解析 (1)\(∵PB⊥\)平面\(ABC\),\(BC⊂\)平面\(ABC\),\(∴BC⊥PB\), 又\(AB⊥BC\),\(AB∩BP=B\), \(∴BC⊥\)平面\(PAB\),\(PA⊂\)平面\(PAB\), \(∴BC⊥PA\).① 又\(AB=PB=2\),\(△PAB\)为等腰直角三角形,\(G\)为斜边\(PA\)的中点, \(∴BG⊥PA\),②又\(BG∩BC=B\), \(∴PA⊥\)平面\(BCG\),\(PA⊂\)平面\(PAC\), \(∴\)平面\(BCG⊥\)平面\(PAC\); (2)以点\(B\)为坐标原点,\(BA\)为\(x\)轴,\(BC\)为\(y\)轴,\(BP\)为\(z\)轴建立空间直角坐标系, 则\(A(2,0,0)\), \(C(0,2 \sqrt{3}, 0)\),\(P(0,0,2)\), \(E(0, \sqrt{3}, 1)\), 设存在点\(N∈AC\),使\(PN⊥BE\),点\(N\)的坐标设为\(N(x_0,y_0,0)\) 则:得 \(\overrightarrow{B E}=(0, \sqrt{3}, 1)\), \(\overrightarrow{P N}=\left(x_{0}, y_{0},-2\right)\) 由相似三角形得: \(\dfrac{2-x_{0}}{|A B|}=\dfrac{y_{0}}{|B C|}\),即 \(\dfrac{2-x_{0}}{2}=\dfrac{y_{0}}{2 \sqrt{3}}\), \(\therefore y_{0}=2 \sqrt{3}-\sqrt{3} x_{0}\). \(\therefore \overrightarrow{P N}=\left(x_{0}, 2 \sqrt{3}-\sqrt{3} x_{0},-2\right)\) 又\(PN⊥BE\), \(\therefore \overrightarrow{B E} \cdot \overrightarrow{P N}=0\). \(\therefore 0 \times x_{0}+\sqrt{3} \times\left(2 \sqrt{3}-\sqrt{3} x_{0}\right)+1 \times(-2)=0\), \(\therefore x_{0}=\dfrac{4}{3} \in[0,2]\),故存在点\(N∈AC\),使\(PN⊥BE\). image.png

【C组---拓展题】

1 如图\(1\)所示,在边长为\(12\)的正方形\(AA' A_1' A_1\)中,点\(B\),\(C\)在线段\(AA'\)上,且\(AB=3\),\(BC=4\),作\(BB_1∥AA_1\),分别交\(A_1 A_1'\)、\(AA_1'\)于点\(B_1\) 、\(P\),作\(CC_1∥AA_1\),分别交\(A_1 A_1'\) 、\(AA_1'\)于点\(C_1\)、\(Q\),将该正方形沿\(BB_1\)、\(CC_1\)折叠,使得 \(A^{\prime} A_{1}{ }^{\prime}\)与\(AA_1\)重合,构成如图\(2\)所示的三棱柱\(ABC-A_1 B_1 C_1\). image.png (1)在三棱柱\(ABC-A_1 B_1 C_1\)中,求证:\(AB⊥\)平面\(BCC_1 B_1\); (2)求平面\(APQ\)将三棱柱\(ABC-A_1 B_1 C_1\)分成上、下两部分几何体的体积之比; (3)试判断直线\(AQ\)是否与平面\(A_1 C_1 P\)平行,并说明理由.    

参考答案

答案 (1)略 (2) 13/5 (3) 不平行 解析 证明:(1)\(∵AB=3\),\(BC=4\),\(∴AC=12-3-4=5\), 从而有\(AC^2=AB^2+BC^2\),\(∴AB⊥BC\), 又\(∵AB⊥BB_1\),\(BC∩BB_1=B\),\(∴AB⊥\)平面\(BCC_1 B_1\). 解:(2)\(∵BP=AB=3\),\(CQ=AC=7\), \(\therefore S_{B C Q P}=\dfrac{(B P+C Q) \cdot B C}{2}=\dfrac{(3+7) \times 4}{2}=20\), \(\therefore V_{A-B C Q P}=\dfrac{1}{3} S_{B C Q P} \cdot A B=\dfrac{1}{3} \times 20 \times 3=20\). 又 \(\because V_{A B C-A_{1} B_{1} C_{1}}=S_{A B C} \cdot A A_{1}=\dfrac{1}{2} \times 3 \times 4 \times 12=72\), \(∴\)平面APQ将三棱柱\(ABC-A_1 B_1 C_1\)分成上、下两部分几何体的体积之比为 \(\dfrac{V_{上}}{V_{下}}=\dfrac{72-20}{20}=\dfrac{13}{5}\). (3)直线\(AQ\)与平面\(A_1 C_1 P\)不平行. 理由如下: 以\(B\)为原点,\(BA\)为\(x\)轴,\(BC\)为\(y\)轴,\(BB_1\)为\(z\)轴,建立空间直角坐标系, \(A(3,0,0)\),\(Q(0,4,7)\),\(A_1 (3,0,12)\),\(C_1 (0,4,12)\),\(P(0,0,3)\), \(\overrightarrow{A Q}=(-3,4,7)\), \(\overrightarrow{P A} \vec{A}_{1}=(3,0,9)\), \(\overrightarrow{P C}_{1}=(0,4,9)\), 设平面\(A_1 C_1 P\)的法向量 \(\vec{n}=(x, y, z)\), 则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{P A_{1}}=3 x+9 z=0 \\ \vec{n} \cdot \overrightarrow{P C_{1}}=4 y+9 z=0 \end{array}\right.\),取\(x=3\),得 \(\vec{n}=\left(3, \dfrac{9}{4},-1\right)\), \(\because \overrightarrow{A Q} \cdot \vec{n}=-9+9-7=-7 \neq 0\), \(∴\)直线\(AQ\)与平面\(A_1 C_1 P\)不平行. image.png


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3