氧化还原电位 (Eh) 和 pH 作为土壤/植物/微生物系统的驱动因素:指向农学综合机会的跨学科概述,Plant and Soil

您所在的位置:网站首页 氧化还原电位有正负吗 氧化还原电位 (Eh) 和 pH 作为土壤/植物/微生物系统的驱动因素:指向农学综合机会的跨学科概述,Plant and Soil

氧化还原电位 (Eh) 和 pH 作为土壤/植物/微生物系统的驱动因素:指向农学综合机会的跨学科概述,Plant and Soil

2024-07-09 15:59| 来源: 网络整理| 查看: 265

Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy

BackgroundOxidation-reduction and acid–base reactions are essential for the maintenance of all living organisms. However, redox potential (Eh) has received little attention in agronomy, unlike pH, which is regarded as a master variable. Agronomists are probably depriving themselves of a key factor in crop and soil science which could be a useful integrative tool.ScopeThis paper reviews the existing literature on Eh in various disciplines connected to agronomy, whether associated or not with pH, and then integrates this knowledge within a composite framework.ConclusionsThis transdisciplinary review offers evidence that Eh and pH are respectively and jointly major drivers of soil/plant/microorganism systems. Information on the roles of Eh and pH in plant and microorganism physiology and in soil genesis converges to form an operational framework for further studies of soil/plant/microorganism functioning. This framework is based on the hypothesis that plants physiologically function within a specific internal Eh-pH range and that, along with microorganisms, they alter Eh and pH in the rhizosphere to ensure homeostasis at the cell level. This new perspective could help in bridging several disciplines related to agronomy, and across micro and macro-scales. It should help to improve cropping systems design and management, in conventional, organic, and conservation agriculture.



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3