矢量运算中常用恒等式的总结

您所在的位置:网站首页 标量乘以向量 矢量运算中常用恒等式的总结

矢量运算中常用恒等式的总结

2024-05-30 06:28| 来源: 网络整理| 查看: 265

图片尺寸:5181x3076px作品名称:Reflections on the Thames, Westminster创作者:约翰·阿特金森·格里姆肖John Atkinson Grimshaw创作年代:1880风格:印象派体裁:城市风光材质:布面油画现位于:利兹美术馆,英格兰实际尺寸:127 x 76.2 cm

在学习物理的过程中,难免会碰到许许多多较为复杂的矢量运算(比如电动力学中经常涉及到电磁场 \mathbf{E},\mathbf{B} 以及对应的标势与矢势 \Phi,\mathbf{A} 的各种运算)。耗费大量精力去记忆则没有必要,每次遇到又重新推导一遍又过于繁琐,如果能有一个系统罗列矢量恒等式的列表供查阅则可大大减轻学习负担。

在此我参考Wikipedia罗列出常用的矢量恒等式[1][2]。

本文可作为数学公式手册查阅使用。

持续更新中。

一、代数恒等式1.1 基本概念

点乘(标量积):

\mathbf{A}\cdot\mathbf{B} = A_xB_x+A_yB_y+A_zB_z = A_iB_i\tag{1.1}

叉乘(矢量积):

\mathbf{A}\times\mathbf{B} = \left|\begin{array}& \mathbf{i} &\mathbf{j} &\mathbf{k}\\[.15cm]A_x &A_y &A_{z}\\[.15cm] B_{x} &B_{y}& B_{z} \end{array}\right| = \epsilon_{ijk}A_jB_{k}\mathbf{e}_{i} \tag{1.2}

1.2 代数恒等式总结

矢量加法可对易

\mathbf{A} + \mathbf{B} = \mathbf{B}+\mathbf{A} \tag{1.3}

标量积可对易:

\mathbf{A}\cdot\mathbf{B} = \mathbf{B}\cdot\mathbf{A} \tag{1.4}

矢量积反对易:

\mathbf{A}\times\mathbf{B} = -\mathbf{B}\times\mathbf{A}\tag{1.5}

结合律:

\begin{align} &c(\mathbf{A}+\mathbf{B}) = c\mathbf{A} + c\mathbf{B}\tag{1.6}\\[.3cm] & (\mathbf{A}+\mathbf{B})\cdot\mathbf{C} = \mathbf{A}\cdot\mathbf{C}+\mathbf{B}\cdot\mathbf{C}\tag{1.7}\\[.3cm] &(\mathbf{A}+\mathbf{B})\times\mathbf{C} = \mathbf{A}\times\mathbf{C}+ \mathbf{B}\times\mathbf{C}\tag{1.8} \end{align}

标量三重积:

\mathbf{A}\cdot(\mathbf{B}\times\mathbf{C}) = \mathbf{B}\cdot(\mathbf{C}\times \mathbf{A}) = \mathbf{C}\cdot(\mathbf{A} \times \mathbf{B})= |\mathbf{A}\ \mathbf{B} \ \mathbf{C}| =\left| \begin{array}[c] &A_x &A_y &A_z\\[.15cm] B_x &B_y &B_z\\[.15cm] C_x & C_y &C_z \end{array}\right| \tag{1.9}

矢量三重积:

\mathbf{A}\times(\mathbf{B}\times\mathbf{C}) = (\mathbf{A}\cdot\mathbf{C}) \mathbf{B} - (\mathbf{A}\cdot\mathbf{B})\mathbf{C}\tag{1.10}

雅各比恒等式:

\mathbf{A}\times(\mathbf{B}\times\mathbf{C})+\mathbf{C}\times(\mathbf{A}\times\mathbf{B})+\mathbf{B}\times(\mathbf{C}\times\mathbf{A})=0 \tag{1.11}

比内-柯西恒等式:

(\mathbf{A}\times\mathbf{B}) \cdot(\mathbf{C}\times\mathbf{D}) = (\mathbf{A}\cdot\mathbf{C})(\mathbf{B}\cdot\mathbf{D})-(\mathbf{B}\cdot\mathbf{C})(\mathbf{A}\cdot\mathbf{D})\tag{1.12}

拉格朗日恒等式:

|\mathbf{A}\times\mathbf{B}|^2 = (\mathbf{A}\cdot\mathbf{A})(\mathbf{B}\cdot\mathbf{B}) - |\mathbf{A}\cdot\mathbf{B}|^2 \tag{1.13}

矢量四重积:

\begin{align} (\mathbf{A}\times\mathbf{B})\times(\mathbf{C}\times\mathbf{D})&=|\mathbf{A}\ \mathbf{B}\ \mathbf{D}|\mathbf{C}-|\mathbf{A}\ \mathbf{B}\ \mathbf{C}|\mathbf{D}\\[.2cm]&=|\mathbf{A}\ \mathbf{C}\ \mathbf{D}|\mathbf{B} - |\mathbf{B}\ \mathbf{C}\ \mathbf{D}|\mathbf{A} \end{align}\tag{1.14}

由 \color{royalblue}{(1.14)} 导出另一个公式:

|\mathbf{A\ B \ C}|\mathbf{D} = (\mathbf{A}\cdot\mathbf{D})(\mathbf{B}\times\mathbf{C}) + (\mathbf{B}\cdot\mathbf{D})(\mathbf{C}\times\mathbf{A})+ (\mathbf{C}\cdot\mathbf{D})(\mathbf{A}\times\mathbf{B})\tag{1.15}

在三维空间中,矢量 \mathbf{D} 可由基矢 \{\mathbf{A},\mathbf{B},\mathbf{C}\} 展开为(当然 |\mathbf{A\ B\ C}|\neq0 ):

\mathbf{D} = \frac{\mathbf{D}\cdot(\mathbf{B}\times \mathbf{C})}{|\mathbf{A\ B \ C}|}\mathbf{A}+\frac{\mathbf{D}\cdot(\mathbf{C}\times \mathbf{A})}{|\mathbf{A\ B \ C}|}\mathbf{B}+\frac{\mathbf{D}\cdot(\mathbf{A}\times \mathbf{B})}{|\mathbf{A\ B \ C}|}\mathbf{C}\tag{1.16}

二、微分恒等式2.1 基本概念

梯度:

\mathrm{grad}\ f = \nabla f = \frac{\partial f}{\partial x}\mathbf{i}+\frac{\partial f}{\partial y}\mathbf{j}+\frac{\partial f}{\partial z}\mathbf{k} = \partial_{i} f\ \mathbf{e}_i\\ \tag{2.1}

散度:

\mathrm{div}\ \mathbf{F} =\nabla\cdot\mathbf{F}= \frac{\partial F_x}{\partial x}+ \frac{\partial F_y}{\partial y}+ \frac{\partial F_z}{\partial z} = \partial_{i}F_{i}\\ \tag{2.2}

旋度:

\mathrm{curl}\ \mathbf{F} = \nabla\times\mathbf{F} = \left|\begin{array}& \mathbf{i} &\mathbf{j} &\mathbf{k}\\[.15cm] \partial_{x} &\partial_{y} &\partial_{z}\\[.15cm] \tag{2.3} F_{x} &F_{y}& F_{z} \end{array}\right| = \epsilon_{ijk}\partial_{j}F_{k}\mathbf{e}_{i}\\

拉普拉斯算子(张量场的拉普拉斯算子是它的同阶张量):

\Delta f = \nabla^2 f =(\nabla\cdot\nabla)f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+\frac{\partial^2 f}{\partial z^2}\\ \tag{2.4}

\Delta \mathbf{A} = \nabla^2\mathbf{A} = (\nabla\cdot\nabla)\mathbf{A}\\ \tag{2.5}

2.2 微分恒等式总结

梯度:

\begin{align} &\nabla(\psi + \phi) = \nabla \psi + \nabla \phi \tag{2.6}\\[.3cm] &\nabla(\psi \phi) = \phi \nabla\psi + \psi \nabla \phi \tag{2.7}\\[.3cm] & \nabla(\psi \mathbf{A}) = \nabla\psi \otimes \mathbf{A} + \psi \nabla \mathbf{A}\tag{2.8}\\[.3cm] & \nabla(\mathbf{A}\cdot\mathbf{B}) = (\mathbf{A}\cdot\nabla)\mathbf{B} + (\mathbf{B}\cdot\nabla)\mathbf{A} + \mathbf{A} \times(\nabla\times\mathbf{B}) + \mathbf{B}\times(\nabla\times\mathbf{A})\tag{2.9} \end{align}\\

散度:

\begin{align} &\nabla\cdot(\mathbf{A}+\mathbf{B}) = \nabla\cdot\mathbf{A} + \nabla\cdot\mathbf{B}\tag{2.10}\\[.3cm] &\nabla\cdot(\psi\mathbf{A}) = \psi\nabla\cdot\mathbf{A} + \mathbf{A} \cdot\nabla\psi\tag{2.11}\\[.3cm] &\nabla\cdot(\mathbf{A}\times\mathbf{B}) = (\nabla\times\mathbf{A})\cdot\mathbf{B} - (\nabla\times\mathbf{B})\cdot\mathbf{A}\tag{2.12} \end{align}

旋度:

\begin{align} &\nabla\times(\mathbf{A}+\mathbf{B}) = \nabla\times\mathbf{A}+ \nabla\times\mathbf{B}\tag{2.13}\\[.3cm] &\nabla\times(\psi\mathbf{A}) = \psi(\nabla\times\mathbf{A}) - (\mathbf{A}\times\nabla)\psi = \psi(\nabla\times\mathbf{A}) + (\nabla\psi)\times\mathbf{A}\tag{2.14}\\[.3cm] &\nabla\times(\psi\nabla\phi) = \nabla\psi\times\nabla\phi\tag{2.15}\\[.3cm] &\nabla\times(\mathbf{A}\times\mathbf{B}) = \mathbf{A}(\nabla\cdot\mathbf{B}) - \mathbf{B}(\nabla\cdot\mathbf{A})+ (\mathbf{B}\cdot\nabla)\mathbf{A} - (\mathbf{A}\cdot\nabla)\mathbf{B}\tag{2.16} \end{align}

矢量与 \nabla 算子的点积:

\begin{align} &(\mathbf{A}\cdot\nabla)\mathbf{B} = \frac{1}{2}\bigg[\nabla(\mathbf{A}\cdot\mathbf{B}) - \nabla\times(\mathbf{A}\times\mathbf{B}) - \mathbf{B}\times(\nabla\times\mathbf{A}) \\[.1cm] &\quad \quad \quad \quad \quad\quad \quad- \mathbf{A}\times(\nabla\times\mathbf{B}) - \mathbf{B}(\nabla\cdot\mathbf{A}) + \mathbf{A}(\nabla\cdot\mathbf{B})\bigg]\tag{2.17}\\[.3cm] &(\mathbf{A}\cdot\nabla)\mathbf{A} = \frac{1}{2} \nabla|\mathbf{A}|^2 -\mathbf{A}\times(\nabla\times\mathbf{A})\tag{2.18} \end{align}

二阶导数:

\begin{align} &\nabla\cdot(\nabla\times\mathbf{A}) = 0 \tag{2.19}\\[.3cm] &\nabla\times(\nabla\phi) = 0\tag{2.20}\\[.3cm] &\nabla\cdot(\nabla\psi) = \nabla^2\psi\tag{2.21}\\[.3cm] &\nabla(\nabla\cdot\mathbf{A}) - \nabla\times(\nabla\times\mathbf{A}) =\nabla^2\mathbf{A}\tag{2.22}\\[.3cm] &\nabla\cdot(\phi\nabla\psi) = \phi\nabla^2\psi + \nabla\phi\cdot\nabla\psi\tag{2.23}\\[.3cm] &\psi\nabla^2\phi - \phi\nabla^2\psi = \nabla\cdot(\psi\nabla\phi-\phi\nabla\psi)\tag{2.24}\\[.3cm] &\nabla^2(\phi\psi) = \phi\nabla^2\psi + 2(\nabla\phi)\cdot(\nabla\psi) + (\nabla^2\phi)\psi\tag{2.25}\\[.3cm] &\nabla^2(\psi\mathbf{A}) = \mathbf{A}\nabla^2\psi + 2(\nabla\psi\cdot\nabla)\mathbf{A} + \psi\nabla^2\mathbf{A}\tag{2.26}\\[.3cm] &\nabla^2(\mathbf{A}\cdot\mathbf{B}) = \mathbf{A}\cdot\nabla^2\mathbf{B} - \mathbf{B}\cdot\nabla^2\mathbf{A} + 2\nabla\cdot[(\mathbf{B}\cdot\nabla)\mathbf{A}+ \mathbf{B}\times(\nabla\times\mathbf{A})]\tag{2.27} \end{align}

其中\color{royalblue}{(2.21)}和 \color{royalblue}{(2.22)} 分别是标量和矢量的拉普拉斯算子, \color{royalblue}{(2.27)} 为格林矢量恒等式。

三阶导数:

\begin{align} &\nabla^2(\nabla\psi) = \nabla(\nabla\cdot(\nabla\psi)) = \nabla(\nabla^2\psi)\tag{2.28}\\[.3cm] &\nabla^2(\nabla\cdot\mathbf{A}) = \nabla\cdot(\nabla(\nabla\cdot\mathbf{A})) = \nabla\cdot(\nabla^2\mathbf{A})\tag{2.29}\\[.3cm] &\nabla^2(\nabla\times\mathbf{A}) = -\nabla\times(\nabla\times(\nabla\times\mathbf{A})) = \nabla\times(\nabla^2\mathbf{A})\tag{2.30} \end{align}

三、积分恒等式3.1 积分恒等式总结

面积分-体积分

\begin{align} &\oint_{\partial_{V}} \mathbf{A}\cdot\mathrm{d}\mathbf{S}=\int_{V}\nabla\cdot \mathbf{A}\ \mathrm{d}V \tag{3.1} \\[.3cm] &\oint_{\partial_{V}} \psi \ \mathrm{d}\mathbf{S} =\int_{V} \nabla\psi\ \mathrm{d}V\tag{3.2}\\[.3cm] &\oint_{\partial_{V}}\mathbf{A}\times \mathrm{d}\mathbf{S}=-\int_{V}\nabla\times\mathbf{A}\ \mathrm{d}V\tag{3.3}\\[.3cm] &\oint_{\partial_{V}}\psi\nabla\phi\cdot\mathrm{d}\mathbf{S}=\int_{V}(\psi\nabla^2\phi+\nabla\phi\cdot\nabla\psi)\ \mathrm{d}V\tag{3.4}\\[.3cm] &\oint_{\partial V}(\psi\nabla\phi-\phi\nabla\psi)\cdot\mathrm{d}\mathbf{S} = \oint_{\partial_{V}}\left(\psi\frac{\partial \phi}{\partial n}-\phi\frac{\partial \psi}{\partial n}\right)\mathrm{d}S = \int_{V} (\psi\nabla^2\phi-\phi\nabla^2\psi)\ \mathrm{d}V\tag{3.5}\\[.3cm] &\int_{V}\mathbf{A}\cdot\nabla\psi\ \mathrm{d}V=\oint_{\partial V}\psi\mathbf{A}\cdot\mathrm{d}\mathbf{S} - \int_{V}\psi\nabla\cdot\mathbf{A}\ \mathrm{d}V\tag{3.6}\\[.3cm] &\int_{V} \psi\nabla\cdot\mathbf{A}\ \mathrm{d}V = \oint_{\partial_{V}}\psi \mathbf{A}\cdot\mathrm{d}\mathbf{S} - \int_{V} \mathbf{A}\cdot\nabla\psi \ \mathrm{d}V \tag{3.7} \end{align}

其中 \color{royalblue}{(3.1)} 为散度定理(高斯定理), \color{royalblue}{(3.4)} 为格林第一恒等式, \color{royalblue}{(3.5)} 为格林第二恒等式, \color{royalblue}{(3.6)} 和 \color{royalblue}{(3.7)} 是分部积分所得结果。

线积分-面积分

\begin{align} &\oint_{\partial S}\mathbf{A}\cdot\mathrm{d}\bm{\ell}=\int_{S}(\nabla\times\mathbf{A})\cdot\mathrm{d}\mathbf{S}\tag{3.8}\\[.3cm] &\oint_{\partial_{S}}\psi\ \mathrm{d}\bm{\ell} = -\int_{S}\nabla\psi\times\mathrm{d}\mathbf{S}\tag{3.9} \end{align}

参考^Vector algebra relations https://en.wikipedia.org/wiki/Vector_algebra_relations^Vector calculus identities https://en.wikipedia.org/wiki/Vector_calculus_identities


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3