期望、方差、标准差、协方差、正太分布、分布

您所在的位置:网站首页 标准正态分布求方差 期望、方差、标准差、协方差、正太分布、分布

期望、方差、标准差、协方差、正太分布、分布

2024-07-12 01:48| 来源: 网络整理| 查看: 265

文章目录 1 期望 1.1 定义 1.1.1 离散分布 1.1.2 连续分布 1.2 期望性质 2 方差 2.1 方差定义 2.2 方差性质 3. 标准差 4 协方差和协方差相关系数 4.1 协方差和协方差相关系数的定义 4.1.1 协方差的定义 4.1.2 协方差相关系数的定义 4.2 协方差及相关系数的性质 4.2.1 协方差的性质 4.2.2 协方差相关系数的性质 4.3 协方差和协方差相关系数的区别 5 方差和协方差的区别 6 正太分布 6.1 正太分布定义 6.2 正太分布性质 概率密度函数f(x)图形性质 6.3 标准正太分布 6.4 标准正太分布和正太分布之间的转换 7 分布 7.1 数据分布的图像表示

1 期望

E X 由 随 机 变 量 X 的 概 率 分 布 确 定 EX由随机变量X的概率分布确定 EX由随机变量X的概率分布确定

1.1 定义 1.1.1 离散分布

p = P { X = x } : X 为 x 的 概 率 为 p E X = ∑ k = 1 x k p k 【 后 者 绝 对 收 敛 】 p=P\{X=x\}:X为x的概率为p\\ EX=\sum_{k=1}{x_kp_k}【后者绝对收敛】 p=P{ X=x}:X为x的概率为pEX=k=1∑​xk​pk​【后者绝对收敛】

1.1.2 连续分布

概 率 密 度 f ( x ) E X = ∫ − ∞ + ∞ x f ( x ) d x 【 后 者 绝 对 收 敛 】 概率密度f(x)\\ EX=\int_{-\infty}^{+\infty}xf(x)dx【后者绝对收敛】 概率密度f(x)EX=∫−∞+∞​xf(x)dx【后者绝对收敛】

1.2 期望性质

c 为 常 数 , X , Y 为 随 机 变 量 E ( c ) = c E ( c X ) = c E ( X ) E ( X + Y ) = E X + E Y E ( X Y ) = E X ⋅ E Y 【 当 X , Y 相 互 独 立 时 】 c为常数,X, Y为随机变量\\ E(c)=c\\ E(cX)=cE(X)\\ E(X+Y)=EX+EY\\ E(XY)=EX\cdot EY【当X, Y相互独立时】 c为常数,X,Y为随机变量E(c)=cE(cX)=cE(X)E(X+Y)=EX+EYE(XY)=EX⋅EY【当X,Y相互独立时】

2 方差

随机变量X的分散程度:通过X和其期望EX的偏离程度来体现

2.1 方差定义

D ( X ) = V a r ( X ) = E [ ( X − E X ) 2 ] D(X)=Var(X)=E[(X-EX)^2] D(X)=Var(X)=E[(X−EX)2]

2.2 方差性质

c 为 常 数 , X , Y 为 随 机 变 量 D ( c ) = E [ ( c − E ( c ) ) 2 ] = E [ ( c − c ) 2 ] = 0 D ( c X ) = E [ ( c X − E ( c X ) ) 2 ] = c 2 E [ ( X − E ( X ) ) 2 ] = c 2 D ( X ) D ( X ± Y ) = D X + D Y ± E [ ( X − E X ) ( Y − E Y ) ] D ( X ± Y ) = D X + D Y 【 当 X , Y 相 互 独 立 时 , E [ ( X − E X ) ( Y − E Y ) ] = E ( X Y ) − E X ⋅ E Y = 0 】 c为常数,X, Y为随机变量\\ D(c)=E[(c-E(c))^2]=E[(c-c)^2]=0\\ D(cX)=E[(cX-E(cX))^2]=c^2E[(X-E(X))^2]=c^2D(X)\\ D(X\pm Y)=DX+DY\pm E[(X-EX)(Y-EY)]\\ D(X\pm Y)=DX+DY【当X, Y相互独立时,E[(X-EX)(Y-EY)]=E(XY)-EX\cdot EY=0】 c为常数,X,Y为随机变量D(c)=E[(c−E(c))2]=E[(c−c)2]=0D(cX)=E[(cX−E(cX))2]=c2E[(X−E(X))2]=c2D(X)D(X±Y)=DX+DY±E[(X−EX)(Y−EY)]D(X±Y)=



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3