伊春早白垩世木化石组合:松柏类多样性和古环境指示

您所在的位置:网站首页 木化石鉴定方法和多少钱一克 伊春早白垩世木化石组合:松柏类多样性和古环境指示

伊春早白垩世木化石组合:松柏类多样性和古环境指示

2024-07-17 05:45| 来源: 网络整理| 查看: 265

摘要

简要报道黑龙江伊春下白垩统裸子植物木化石组合,包括4科8属:柏科柏型木属Cupressinoxylon、落羽杉型木属Taxodioxylon,罗汉松科?叶枝杉型木属Phyllocladoxylon,松科雪松型木属Cedroxylon、油杉型木属Keteleerioxylon、云杉型木属Piceoxylon,红豆杉科红豆杉型木属Taxaceoxylon和异木属Xenoxylon。其中,松科木化石多样性最高,占据绝对优势。叶枝杉型木属、红豆杉型木属首次在黑龙江地区发现。当前木化石组合是东亚地区发现的类群最为丰富的白垩纪木化石组合之一,丰富了我国白垩纪裸子植物化石记录。木化石记录表明东北地区是早白垩世裸子植物多样性中心和分布中心之一。伊春木化石中非正常生长轮和创伤树脂道的出现反映了短时气候波动、自然灾害或者森林生态系统中植物与伴生生物间相互作用现象。该化石组合的进一步深入研究将为认识东亚现代裸子植物演化发展历史及其古环境、古气候背景提供重要依据。

Abstract

This paper briefly reports the gymnosperm fossil wood flora from Lower Cretaceous of Yichun City, Heilongjiang Province, including 4 families and 8 genera: Cupressinoxylon, Taxodioxylon (Cupressaceae), Phyllocladoxylon (Podocarpaceae ?), Cedroxylon, Keteleerioxylon, Piceoxylon (Pinaceae), Taxaceoxylon (Taxaceae), and Xenoxylon. Among them, the fossil woods of Pinaceae has the highest diversity and is absolutely dominant. Phyllocladoxylon and Taxaceoxylon were found in Heilongjiang Province for the first time. At present, the Yichun fossil wood flora is one of the Cretaceous wood flora with highest diversity found in China and even in East Asia, which enriches the fossil record of gymnosperms in the Cretaceous of China. The fossil record shows that Northeast China was one of the centers of gymnosperms diversity and distribution in East Asia during Cretaceous. The occurrence of abnormal growth rings and traumatic resin canals in Yichun fossil woods reflect the short-term climate fluctuations, natural hazard or the interaction between plants and the associated organisms in the forest ecosystem. Further study of this fossil wood flora will provide important evidence for understanding the evolution and development history of modern gymnosperms in East Asia and their paleoenvironment and paleoclimate background.

关键词

裸子植物 ; 木化石 ; 多样性 ; 古环境 ; 白垩纪 ; 伊春

Keywords

gymnosperm ; fossil wood ; diversity ; paleoenvironment ; Cretaceous ; Yichun

我国陆相白垩纪地层分布广泛(席党鹏等,2019),地质调查过程中在全国各地发现了大量的植物大化石和微体化石,以及相对较少的木化石(斯行健和李星学,1963; 孙革等,1995; 张武等,2006; 邓胜徽等,2012)。木化石作为重要的植物化石类型之一,保存了植物体茎干和根的次生木质部解剖结构特征以及植物体内保存的节肢动物、真菌遗迹,在植物演化、古气候、古环境、陆地生态系统中生物间相互作用研究方面发挥着重要作用(王永栋等,2017)。我国第一篇白垩纪木化石研究论文由古植物学先驱斯行健先生发表于1951年(斯行健,1951),至今中国白垩纪木化石研究已有70多年的历史。截至目前,全国范围内发现了19个白垩纪木化石产地,报道了29属60种,绝大多数为裸子植物木化石,分别隶属于苏铁类、银杏类和松柏类,仅有1个被子植物记录,绝大部分来自早白垩世地层(张武等,2006; Yang Xiaoju et al.,2013; Tian Ning et al.,2018a,2018b; Cheng Yeming et al.,2021; Jiang Zikun et al.,2021; Shi Xiao et al.,2022; Yang Xiaoju et al.,2022)。我国是东亚地区裸子植物木化石类群多样性最丰富的地区(Oh et al.,2011,2013; Yang Xiaoju et al.,2013)。从地理分布来看,我国绝大多数白垩纪木化石记录来自北方地区,尤其是来自东北地区下白垩统,却很少有记录来自南方地区。从研究内容来看,近年来我国白垩纪木化石的研究方向逐渐从传统的分类学、系统学、植物古地理扩展至生长轮分析、古森林复原、植物与真菌相互作用(Ding Qiuhong et al.,2016; 王永栋等,2017; 朱志鹏等,2018; Tian Ning et al.,2020; Shi Xiao et al.,2022)。

东北地区发育了连续的陆相白垩纪地层(席党鹏等,2019),我国绝大多数白垩纪木化石记录来自该地区,尤其是内蒙古东北部,辽宁西部和黑龙江东部(张武等,2006; Yang Xiaoju et al.,2013)。其中,黑龙江是我国白垩纪木化石研究开展最早的地区,也是木化石多样性最高的地区之一。到目前为止,黑龙江已经发现了12属18种木化石(斯行健,1951; 杜乃正,1982; 郑少林等,1982; 王如峰等,1997; 丁秋红,2000a; Yang Xiaoju et al.,2003; Tian Ning et al.,2018a; Cheng Yeming et al.,2021)。

笔者在黑龙江省伊春市美溪区碧仓库林场(图1)的早白垩世地层(黑龙江省地质矿产局,1993)中发现了大量的木化石,化石主要赋存在第四纪土壤层下部的砂砾石中,保存木化石的砂砾石下部为砂岩。木化石呈黑褐色,全部为裸子植物茎干碎块,仅保存了次生木质部,肉眼可见明显的生长轮,外表没有磨圆。木化石为二氧化硅渗矿化标本,硬度较高,采用标准磨片法对化石进行切片,分别切取木化石横切面、径切面、弦切面,制作切片。利用奥林巴斯DP72拍摄木化石显微构造图片。经鉴定该木化石组合包括裸子植物4科8属,分别为柏科的柏型木属(未定种)Cupressinoxylon sp.和落雨杉型木属(未定种)Taxodioxylon sp.,罗汉松科?的叶枝杉型木属(未定种)Phyllocladoxylon sp.,松科的雪松型木属(未定种)Cedroxylon sp.、油杉型木属(未定种)Keteleerioxylon sp.和云杉型木属(未定种)Piceoxylon sp.,红豆杉科的红豆杉型木属(未定种)Taxaceoxylon sp.和异木属(未定种)Xenoxylon sp.。

1 木化石特征描述

柏科  Cupressaceae

柏型木  Cupressinoxylon

柏型木属未定种  Cupressinoxylon sp.

标本号  BCH20,图2a~d.

描述 生长轮明显,早材至晚材渐变,偶见假轮。管胞径壁具缘纹孔单列至双列,双列时对生,圆形或椭圆形,排列较为疏松,晚材管胞弦壁具有明显具缘纹孔。交叉场纹孔柏木型,纹孔口多倾斜,射线薄壁组织细胞弦向壁和水平壁无纹孔。射线单列,较低(多为10个细胞以内)。轴向薄壁组织丰富,呈弦向短带状和星散状,端壁具有明显节状加厚。无树脂道。

落羽杉型木属  Taxodioxylon

落羽杉型木属未定种  Taxodioxylon sp.

标本号  BCK28,图2e~g.

描述 生长轮明显,早材至晚材略急变。射线单列,较高(多为15个细胞以上)。轴向薄壁组织丰富,星散状,端壁节状加厚不明显。径向创伤树脂道常见。

图1 黑龙江省伊春地区化石产地和地质简图

Fig.1 Fossil locality and simplified geological map of Yichun area in Heilongjiang Province, China

图2 伊春白垩纪木化石Cupressinoxylon sp.(a~d,标本号BCH20),Taxodioxylon sp.(e~g,标本号BCK28)以及Phyllocladoxylon sp.(h~k,标本号BCH21)的解剖结构

Fig.2 The anatomical structures of fossil woods Cupressinoxylon sp. (a~d, specimen number BCH20) , Taxodioxylon sp. (e~g, specimen number BCK28) and Phyllocladoxylon sp. (h~k, specimen number BCH21) from the Cretaceous of Yichun

(a)—横切面,生长轮明显,假年轮(箭头),早材至晚材渐变,轴向薄壁组织星散状及短弦向带状;(b)—径切面,管胞径壁具缘纹孔单列,排列疏松;(c)—径切面,交叉场纹孔柏木型,射线薄壁细胞水平壁和弦向壁无纹孔;(d)—弦切面,射线单列,较低,轴向薄壁组织细胞端壁具有明显节状加厚;(e)—横切面,生长轮明显,早材至晚材急变,薄壁组织位星散状及短弦向带状;(f)—横切面,轴向薄壁组织细胞具有黑色内含物;(g)—弦切面,射线单列,创伤树脂道(箭头);(h)—横切面,生长轮明显,早材至晚材渐变;(i)—径切面,管胞径壁具缘纹孔多单列,排列疏松;(j)—径切面,交叉场纹孔窗格型,射线薄壁细胞水平壁和弦向壁无纹孔;(k)—弦切面,射线单列

(a) —transverse section, showing distinct growth rings, false ring (arrows) , gradual transition from early to latewood and short tangential banded and diffuse axial parenchyma; (b) —radial section, showing uniseriate spaced bordered pits on radial wall of the tracheids; (c) —radial section, showing cupressoid cross-field pits, smooth horizontal wall and end wall of ray parenchyma cells; (d) —tangential section, showing uniseriate xylem rays, nodular horizontal end wall of axial parenchyma cells; (e) —transverse section, showing distinct growth rings, abrupt transition from early to latewood, short tangential banded and diffuse axial parenchyma; (f) —transverse section, showing axial parenchyma cells with black deposits; (g) —tangential section, showing uniseriate xylem rays, horizontal traumatic resin canals (arrows) ; (h) —transverse section, showing distinct growth rings, gradual transition from early to latewood; (i) —radial section, showing uniseriate spaced bordered pits on radial wall of tracheids; (j) —radial section, showing window-like cross-field pits, smooth horizontal wall and end wall of ray parenchyma cells; (k) —tangential section, showing uniseriate xylem rays

罗汉松科  Podocarpaceae?

叶枝杉型木  Phyllocladoxylon

叶枝杉型木属未定种  Phyllocladoxylon sp.

标本号  BCH21,图2h~k.

描述 生长轮明显,早材至晚材渐变。管胞径壁具缘纹孔单列,圆形或椭圆形,排列疏松。交叉场纹孔窗格型,多1个,纹孔缘窄,射线薄壁组织细胞水平壁和弦向壁无纹孔。射线单列,较低。无轴向薄壁组织和树脂道。

松科  Pinaceae

雪松型木属  Cedroxylon

雪松型木属未定种  Cedroxylon sp.

标本号  BCK22,图3a~d.

描述 生长轮明显,早材至晚材渐变。管胞径壁具缘纹孔单列至双列,双列多对生,圆形或椭圆形,排列疏松; 晚材管胞弦壁具缘纹孔明显。交叉场纹孔杉木型,射线薄壁组织细胞水平壁和弦向壁具明显纹孔。射线单列,较高。轴向薄壁组织位于生长轮界,带状,端壁节状加厚明显。无树脂道。

油杉型木属  Keteleerioxylon

油杉型木属未定种  Keteleerioxylon sp.

标本号  BCK26,BCK47,图3e~h.

描述 生长轮明显,早材至晚材急变。管胞径壁具缘纹孔单列至三列,两列以上时多对生,圆形或椭圆形,排列紧挤。交叉场纹孔云杉型,多倾斜,纹孔口超过纹孔缘,射线薄壁组织细胞水平壁和弦向壁具有纹孔。射线多单列,较高。具有正常轴向树脂道和径向创伤树脂道。

云杉型木属  Piceoxylon

云杉型木属未定种  Piceoxylon sp.

标本号  BCK2,图3i~l.

描述 生长轮明显,早材至晚材略急变。管胞径壁具缘纹孔单列至两列,两列时多对列少互列,圆形或椭圆形,排列疏松或紧挤。交叉场纹孔云杉型,纹孔口超过纹孔缘,较窄,射线薄壁组织细胞水平壁和弦向壁具有纹孔。具有射线管胞。普通射线多单列,纺锤状射线为多列。具有正常轴向和径向树脂道,泌脂细胞厚壁。

红豆杉科  Taxaceae

红豆杉型木  Taxaceoxylon

红豆杉型木属未定种  Taxaceoxylon sp.

标本号  BCK49,图4a~c.

描述 生长轮明显,早材至晚材渐变。管胞径壁具缘纹孔单列,圆形或椭圆形,排列疏松,具有明显的螺纹加厚。交叉场纹孔柏木型,射线薄壁组织细胞水平壁和弦向壁具有纹孔。射线单列,较低。无树脂道。

未定科

异木属  Xenoxylon

异木属未定种  Xenoxylon sp.

标本号  BCK8,图4d~f.

描述 生长轮明显,早材至晚材渐变,偶见极窄生长轮。管胞径壁具缘纹孔单列,多为压扁的椭圆形,排列多紧挤,晚材管胞弦壁具有明显具缘纹孔。交叉场纹孔窗格型,多1个,纹孔缘极窄,射线薄壁组织细胞水平壁和弦向壁无纹孔。射线单列。无轴向薄壁组织和树脂道。

2 讨论 2.1 白垩纪木化石群对比及松柏类多样性

东亚地区是北半球白垩纪裸子植物木化石记录较为丰富的地区之一(Oh et al.,2011,2013)。其中,中国东北的白垩纪木化石记录最为丰富,已报道18属,韩国已报道6属,俄罗斯远东地区已报道7属,日本已报道12属(表1)。

当前,木化石组合共包含4科(柏科、罗汉松科?、松科、红豆杉科)8属(Cupressinoxylon、Taxodioxylon、Phyllocladoxylon、Cedroxylon、Keteleerioxylon、Piceoxylon、Taxaceoxylon和Xenoxylon),是我国东北地区甚至东亚地区发现的类群最为丰富的白垩纪木化石组合之一。其中,Phyllocladoxylon和Taxaceoxylon是首次在黑龙江地区发现。在古植物区系划分上,伊春木化石群属于北方植物区(孙革等,1995)。在我国已经报道的白垩纪裸子植物木化石组合中(张武等,2006; Yang Xiaoju et al.,2013),内蒙古大兴安岭地区扎鲁特霍林河煤矿早白垩世霍林河组和鄂温克伊敏煤矿早白垩世伊敏组发现的丝炭化裸子植物木化石多样性较高(何德长,1995)。霍林河组包括4属4种:Cedroxylonjinshaense(Zheng et Zhang)He,Phyllocladoxyloneboracense(Holden)Krausel,Protocedroxylonorientale He,Xenoxylonpeideense Zheng et Zhang; 伊敏组包括6属8种和1未定种:Cedroxylonjinshaense(Zheng et Zhang)He,Phyllocladoxylonheizyoense Shimakura,P. densum He,P. hailaerense He,Podocarpoxylon sp.,Piceoxylonprisum He,Protoglyptostroboxylongiganteum He,P. yiminense He,Taxoxylonpulchrum He。两个产地共包括8个属,分别为:Cedroxylon、Phyllocladoxylon、Piceoxylon、Podocarpoxylon、Protocedroxylon、Protoglyptostroboxylon、Taxoxylon和Xenoxylon。从植物组合面貌上,当前木化石组合与该植物组合共同具有4个属:Cedroxylon,Phyllocladoxylon,Piceoxylon和Xenoxylon。它们是我国东北地区白垩纪时期多样性较高和分布范围较广的类群,在当时的森林生态系统中占据优势。

图3 伊春白垩纪木化石Cedroxylon sp.(a~d,标本号BCK22),Keteleerioxylon sp.(e~h,标本号BCK26,47)以及Piceoxylon sp.(i~l,标本号BCK2)的解剖结构

Fig.3 The anatomical structures of fossil woods Cedroxylon sp. (a~d, specimen number BCK22) , Keteleerioxylon sp. (e~h, specimen number BCK26, 47) and Piceoxylon sp. (i~l, specimen number BCK2) from the Cretaceous of Yichun

(a)—横切面,生长轮明显,早材至晚材渐变,薄壁组织位于生长轮界,带状;(b)—径切面,管胞径壁具缘纹孔单列至两列,双列时多对生;(c)—径切面,交叉场纹孔杉木型,射线薄壁细胞水平壁和弦向壁具有明显纹孔;(d)—弦切面,射线单列,轴向薄壁组织细胞端壁具有节状加厚,弦壁具缘纹孔明显;(e)—横切面,生长轮明显,早材至晚材急变,轴向树脂道;(f)—径切面,管胞径壁具缘纹孔单列至三列,对生;(g)—弦切面,射线单列;(h)—弦切面,径向创伤树脂道;(i)—横切面,生长轮明显,早材至晚材略急变,轴向树脂道;(j)—径切面,管胞径壁具缘纹孔单列至两列,排列疏松或紧挤,两列时多互生;(k)—径切面,交叉场纹孔云杉型,射线薄壁细胞水平壁和弦向壁具有纹孔,具有射线管胞;(l)—弦切面,普通射线多单列,多列纺锤状射线具有径向树脂道

(a) —transverse section, showing distinct growth rings, gradual transition from early to latewood, banded axial parenchyma in growth ring boundary; (b) —radial section, showing biseriate and triseriate opposite or uniseriate bordered pits on radial wall of tracheids; (c) —radial section, showing details of taxodioid cross-field pits, pitted horizontal wall and end wall of ray parenchyma cells; (d) —tangential section, showing uniseriate xylem rays, pitted end wall of axial parenchyma cells, bordered pits on tangential wall of tracheids; (e) —transverse section, showing distinct growth rings, abrupt transition from early to latewood, and axial resin canal; (f) —radial section, showing biseriate and triseriate opposite or uniseriate bordered pits on radial wall of tracheids; (g) —tangential section, showing uniseriate xylem rays; (h) —tangential section, showing horizontal traumatic resin canal; (i) —transverse section, showing distinct growth rings, slightly abrupt transition from early to latewood and axial resin canals; (j) —radial section, showing biseriate alternate or uniseriate bordered pits on radial wall of tracheids; (k) —radial section, showing piceoid cross-field pits, pitted horizontal wall and end wall of ray parenchyma cells, ray tracheids; (l) —tangential section, showing uniseriate xylem rays, multiseriate xylem ray with horizontal resin canal

图4 伊春白垩纪木化石Taxaceoxylon sp.(a~c,标本号BCK49),Xenoxylon sp.(d~f,标本号BCK8),Cedroxylon sp.(g~h,标本号BCK29),Piceoxylon sp.(i,标本号BCH6)以及Piceoxylon sp.(j,标本号BCK2)的解剖结构

Fig.4 The anatomical structures of fossil woods Taxaceoxylon sp. (a~c, specimen number BCK49) , Xenoxylon sp. (d~f, specimen number BCK8) , Cedroxylon sp. (g~h, specimen number BCK29) , Piceoxylon sp. (i, specimen number BCH6) and Piceoxylon sp. (j, specimen number BCK2) from the Cretaceous of Yichun

(a)—横切面,生长轮明显,早材至晚材渐变;(b)—径切面,管胞径壁具缘纹孔单列,排列疏松,具有明显的螺纹加厚;(c)—弦切面,射线单列,具有明显的螺纹加厚; .(d)—横切面,生长轮明显,早材至晚材渐变,窄年轮(箭头);(e)—径切面,管胞径壁具缘纹孔单列,多为压扁的椭圆形,排列多紧挤,交叉场纹孔窗格型,射线薄壁细胞水平壁和弦向壁无纹孔;(f)—弦切面,射线单列,晚材管胞弦壁具有明显具缘纹孔;(g)—横切面,非正常生长轮,具有伤痕(箭头);(h)—横切面,凹陷生长轮,愈伤组织(箭头);(i)—横切面,轴向创伤树脂道(箭头);(j)—弦切面,径向创伤树脂道

(a) —transverse section, showing distinct growth rings, gradual transition from early to latewood; (b) —tadial section, showing uniseriate spaced bordered pits on radial wall of tracheids, helical thickenings in longitudinal tracheids; (c) —tangential section, showing uniseriate xylem rays and helical thickenings; (d) —transverse section, showing distinct growth rings, gradual transition from early to latewood, narrow growth ring (arrows) ; (e) —radial section, showing uniseriate contiguous bordered pits on radial wall of tracheids, window-like cross-field pits, smooth horizontal wall and end wall of ray parenchyma cells; (f) —tangential section, showing uniseriate xylem rays, bordered pits on tangential wall of tracheids; (g) —transverse section, showing abnormal growth ring with scar (wound tissue) (arrow) ; (h) —transverse section, showing abnormal growth ring with callus tissue (arrow) ; (i) —transverse section, showing axial traumatic resin canals (arrows) ; (j) —tangential section showing horizontal traumatic resin canal

此外,著名的热河生物群产地所在的辽西地区硅化木数量众多,结构特征保存精美,研究工作最为系统全面。该地区北票早白垩世义县组木化石多样性较高,已经报道了5科9属10种(丁秋红,2000b; Ding Qiuhong et al.,2016),包括:Araucarioxylonsidugawaense Shimakura、Taxodioxylonheiengziense Tian,Wang,Zhang and Zheng、Thujoxylonbeipiaoense Tian,Wang,Zhang and Zheng、Piceoxylonzaocishanense Ding、Protocedroxylonshengjinbeigouense Tian,Wang,Zhang and Zheng、ProtopodocarpoxylonjingangshanenseDing、ProtophyllocladoxylonfrananicumVogellehner、Sciadopityoxylonliaoningense Ding、Xenoxylonhopeiense Chang以及X. latiporosum(Cramer)Gothan(Ding Qiuhong et al.,2016)。与伊春木化石群共同具有Taxodioxylon、Piceoxylon和Xenoxylon。

表1 中国东北及附近国家(韩国,日本和俄罗斯远东地区)白垩纪裸子植物木化石属记录(修改自Oh et al.,2013)

Table1 A list of gymnosperm fossil wood taxa at generic level from the Cretaceous of Northeast China and adjacent region (Northeast China, South Korea, Japan and Russian Far East) (after Oh et al., 2013)

与黑龙江地区相邻的俄罗斯远东地区白垩系也发现了与我国东北地区(尤其是黑龙江地区)相同科属木化石,包括:柏科Sequoioxylon(Blokhina et al.,2010; Afonin,2013),松科Keteleerioxylon(Blokhina et al.,2006)、Piceoxylon(Blokhina et al.,2009; Afonin,2012)、Protocedroxylon s.l.(Afonin et al.,2014),红豆杉科Taxaceoxylon(Afonin et al.,2014),银杏科Ginkgoxylon(Afonin,2016)和Xenoxylon(Afonin et al.,2014; Afonin,2019)。以上化石纪录表明白垩纪时期我国黑龙江地区与俄罗斯远东地区裸子植物成分具有较高的相似性,可能属于同一植物区系。

现有东亚地区早白垩世松柏类木化石记录表明我国东北地区多样性最高,包括18属,因此,我国东北地区可能是当时松柏类植物多样性中心和分布中心之一。其中,松科和柏科(包括传统杉科)多样性较高。松科木化石5属,多样性最高,包括:Cedroxylon(何德长,1995)、Keteleerioxylon,Piceoxylon(斯行健,1951; 丁秋红等,2000b)、Protocedroxylon(何德长,1995; Ding Qiuhong et al.,2016)和Protopiceoxylon(杜乃正,1982; 丁秋红,2000a)。柏科木化石4属,多样性位居第二,包括:Cupressinoxylon(郑少林等,1982; 王如峰等,1997)、Glyptostroboxylon(郑少林等,1982)、Sequoioxylon(Tian Ning et al.,2018a)和Taxodioxylon(王如峰等,1997; Yang Xiaoju et al.,2003)。另外,异木属木化石也较为常见,出现于东北地区各个木化石群(张武等,2006; Yang Xiaoju et al.,2013)。松柏类较高多样性与早白垩世时期东北地区所处的温暖湿润气候区密切相关,有利于松柏类植物生长发育(Hallam,1984; Hay,2017)。

白垩纪以来特别是第四纪冰期全球气候变冷以及陆地格局的变化,深刻影响了松柏类植物的分布和多样性。异木属在白垩纪末期绝灭,新生代已无记录(Philippe and Thévenard,1996)。杉科(现归入柏科)和罗汉松科植物现今已经退缩至长江以南亚热带地区,杉科多数属为单种属(于永福,1995)。松科植物适应力较强,耐寒类群如冷杉属、云杉属、落叶松属较好地适应了这种气候变化趋势,现今广泛分布于北方温带地区和亚热带高山(李楠,1995),而喜暖类群油杉属现今分布于长江以南地区。现今我国仍然是世界上松柏类的多样性中心和分布中心之一,多样性最高的地区为云南横断山区(应俊生等,1981; 李果等,2009)。

2.2 松柏类木化石生长轮与古环境

柏型木属、雪松型木属、异木属木化石出现了一些非正常生长轮,表现为窄轮、假轮、具有愈伤组织生长轮(图2a和图4d、g、h)。现代木材解剖学研究表明非正常生长轮的出现与气候变化和自然灾害相关(缑旭东和冯卓,2021)。例如,窄轮和缺轮的出现可能与森林野火相关,森林野火烧毁树冠进而阻断了发生火灾当年生长轮的径向生长(Ortloff,1996)。生长过程中春季极端干旱气候的出现(Creber et al.,1984,1985; Schweingruber,1988; Wimmer,2002)或者虫害(Gonda et al.,2012)会导致假年轮的出现。具有愈伤组织生长轮的出现可能是由于在生长过程中发生地质灾害(Stoffel et al.,2008; Bollschweiler et al.,2010),或者脊椎动物对树木的伤害、昆虫啃咬树皮造成维管形成层的伤害而形成(Feng et al.,2017,2019)。伊春木化石中非正常生长轮的出现反映了树木生长过程中发生的气候变化、自然灾害和森林中伴生动物对植物生长过程的影响。

云杉型木属、油杉型木属和落羽杉型木属木化石生长轮经常出现轴向和/或径向创伤树脂道(图2g,图3h,图4i、j)。创伤树脂道的出现与树木生长环境密切相关,源于树木外界环境刺激,包括生物和非生物因素。生物因素包括昆虫的啃咬、蛀蚀、真菌的入侵等,非生物因素包括森林火、霜冻、泥石流、岩崩、洪水等(周崟等,1994; Franceschi et al.,2002; Hudgins et al.,2004; IAWA Committee,2004; Krokene et al.,2008; Stoffel et al.,2008)。伊春木化石创伤树脂道的出现反映了生长过程中其他生物对树木的伤害以及自然界中发生的气候变化事件和地质活动的影响。大量创伤树脂道产生的树脂主要包含萜烯(terpenes)(Gershenzon et al.,1991),可以驱走或者引起昆虫和致病菌感染,阻止外界环境中昆虫和致病菌对树木的进一步伤害,从而起到保护植物自身安全的作用(Gijzen et al.,1993; Krokene et al.,2008)。

3 结论

(1)伊春木化石群是我国乃至东亚地区最为丰富的白垩纪木化石群之一,丰富了我国白垩纪裸子植物化石记录,为认识东亚地区白垩纪裸子植物多样性提供了重要证据。

(2)该木化石群中松柏类非正常生长轮和创伤树脂道的出现为认识当时古气候波动、自然灾害以及森林生态系统中生物间相互作用提供了证据。

(3)当前木化石群的深入研究将为认识东亚地区裸子植物多样性中心的形成过程,以及现代裸子植物古地理变迁及其古气候和古环境背景提供重要证据。

致谢:感谢中国地质博物馆同事卢立伍、冯向阳、靳悦高、章甦、杨小男和毛冰先生在野外标本采集工作中给予的大力支持,感谢审稿人对论文提出的建设性修改意见,在此一并表示感谢。

参考文献

Afonin M. 2012. Fossil wood of Piceoxylon burejense sp. nov. (Pinaceae) from the Upper Cretaceous of Zeya-Bureya basin, Amur region (Russian Far East). Paleontological Journal, 46(3): 324~329.

Afonin M. 2013. Fossil wood Sequoioxylon dimyense sp. nov. (Cupressaceae) from the Upper Cretaceous of Zeya-Bureya basin, Russian Far East. Paleontological Journal, 47: 631~640.

Afonin M. 2016. Fossil wood Ginkgoxylon amurense sp. nov. (Ginkgoaceae) from the Upper Cretaceous of the Amur River area, Russian Far East. Paleontological Journal, 50(5): 533~540.

Afonin M. 2019. Xenoxylon (Coniferales) Fossil woods from the Jurassic and Cretaceous deposits of Siberia and the Russian Far East. Paleontological Journal, 53: 89~104. Afonin M, Philippe M. 2014. Fossil woods from the Lower Cretaceous (Albian) of Kamchatka Peninsula, Russian Far East. Cretaceous Research, 50: 110~119.

Blokhina N I, Afonin M, Popov A M. 2006. Fossil wood of Keteleerioxylon kamtschatkiense sp. nov. (Pinaceae) from the Cretaceous of the Northwestern Kamchatka Peninsula. Paleontological Journal, 40(6): 678~686.

Blokhina N I, Afonin M. 2009. Newspecies of Piceoxylon Gothan (Pinaceae) from the Cretaceous and Paleogene of the northwestern Kamchatka Peninsula. Paleontological Journal, 43(10): 1190~1201.

Blokhina N I, Afonin M, Kodrul T M. 2010. Fossil wood of Sequoioxylon burejense sp. nov. (Taxodiaceae) from the Upper Cretaceous of the Zeya-Bureya basin (Russian Far East). Paleontological Journal, 44 (10): 1231~1239.

Bollschweiler M, Stoffel M. 2010. Tree rings and debris flows: Recent developments, future directions. Progress in Physical Geography, 34(5): 625~645.

Bureau of Geology and Mineral Resources of Heilongjiang Province. 1993. People's Republic of China Ministry of Geology and Mineral Resources Geological Memoirs series 1, number 33, Regional Geology of Heilongjiang Province. Beijing: Geological Publishing House (in Chinese).

Cheng Yeming, Liu Fengxiang, Jin Yuegao, Sun Tongxing. 2021. A new Cretaceous record of Platanoxylon (Platanaceae): The first Mesozoic angiosperm wood from China. IAWA Journal, 42(1): 92~99.

Creber G T, Chaloner W G. 1984. Environmental significance of wood structure in living and fossil trees. The Botanical Review, 50: 357~448.

Creber G T, Chaloner W G. 1985. Tree growth in the Mesozoic and Early Tertiary and the reconstruction of palaeoclimates. Palaeogeography, Palaeoclimatology, Palaeoecology, 52: 35~60.

Deng Shenghui, Lu Yuanzheng, Fan Ru, Li Xin, Fang Linhao, Liu Lu. 2012. Cretaceous floras and biostratigraphy of China. Journal of Stratigraphy, 36(2): 241~265.

Ding Qiuhong. 2000a. Protopiceoxylon moheense sp. nov. from the Jiufengshan Formation in Heilongjiang Province. Chinese Bulletin of Botany, 17(Special Issue): 206~209 (in Chinese with English summary).

Ding Qiuhong. 2000b. Research on fossil wood from the Yixian Formation in western Liaoning Province, China. Acta Palaeontologica Sinica, 39 (Sup. ): 209~219(in Chinese with English abstract).

Ding Qiuhong, Tiang Ning, Wang Yongdong, Jiang Zikun, Chen Shuwang, Wang Dong, Zhang Wu, Zheng Shaolin, Xie Aowei, Zhang Guoqiang, Liu Zhongjian. 2016. Fossil coniferous wood from the Early Cretaceous Jehol Biota in western Liaoning, NE China: New material and palaeoclimate implications. Cretaceous Research, 61: 57~70.

Du Naizheng. 1982. Two fossil woods from Heilongjiang Province of China. Journal of Integrative Plant Biology, 24(4): 383~387 (in Chinese with English abstract).

Feng Zhuo, Wang Jun, Röβler R, Ślipiński A, Labandeira C. 2017. Late Permian wood-borings reveal an intricate network of ecological relationships. Nature Communications, 8: 556.

Feng Zhuo, Bertling M, Noll R, Ślipiński A, Röβler R, 2019. Beetle borings in wood with host response in early Permian conifers from Germany. Palaeontologische Zeitschrift, 93: 409~421.

Franceschi V R, Krekling T, Christiansen E. 2002. Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense related responses in phloem and xylem. American Journal of Botany, 89: 578~586.

Gershenzon J, Croteau R B. 1991. Terpenoids. In: Rosenthal G A, Berenbaum M R, eds. Herbivores: Their Interactions with Secondary Plant Metabolites. Vol I, the Chemical Participants. San Diego: Academic Press, San Diego, 165~219.

Gijzen M, Lewinsohn E, Savage T J, Croteau R B. 1993. Conifer monoterpenes-biochemistry and bark beetle chemical ecology. American Chemical Society Symposium, 525: 8~22.

Gonda K L, Radville L, Preisser E L. 2012. False ring formation in eastern Hemlock Branches: Impacts of Hemlock Woolly Adelgid and Elongate Hemlock Scale. Environmental Entomology, 41(3): 523~531.

Gou Xudong, Feng Zhuo. 2021. Quantitative analysis of growth rings and their applications on fossil conifer wood. Acta Palaeontologica Sinica, 60(2): 299~313.

Hallam A. 1984. Continental humid and arid zones during the Jurassic and Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 47: 195~223.

Hay W W. 2017. Toward understanding Cretaceous climate—An updated review. Science China Earth Sciences, 60(1): 5~19.

He Dechang. 1995. The Coal-forming Plants of Late Mesozoic in Da Hinggan Mountains. Beijing: China Coal Industry Publishing House (in Chinese).

Hudgins J W, Christiansen E, Franceschi V R. 2004. Induction of anatomically based defense responses in stems of diverse conifers by methyl jasmonate: A phylogenetic perspective. Tree Physiology, 24: 251~264.

IAWA Committee. 2004. IAWA list of microscopic features for softwood identification. IAWA Journal, 25: 1~70.

Jiang Zikun, Wu Hao, Tian Ning, Wang Yongdong, Xie Aowei. 2021. A news species of conifer wood Brachyoxylon from the Cretaceous of eastern China and its paleoclimate significance. Historical Biology, 33: 1989~1995.

Krokene P, Nagy N E, Krekling T. 2008. Traumatic resin ducts and polyphenolic parenchyma cells in conifers. In: Schaller A ed. Induced Plant Resistance to Herbivory. Netherlands: Springer, 147~169.

Li Guo, Shen Zehao, Ying Tsunshen, Fang Jingyun. 2009. The spatial pattern of species richness and diversity centers of gymnosperm in China. Biodiversity Science, 17: 272~279 (in Chinese with English abstract).

Li Nan. 1995. Studies on the geographic distribution, origin and dispersal of the family Pinaceae Lindl. Acta Phytotaxonomica Sinica, 33(2): 105~130 (in Chinese with English abstract).

Oh C, Legrand J, Kim K, Philippe M, Paik I S. 2011. Fossil wood diversity gradient and Far-East Asia palaeoclimatology during the Late Triassic-Cretaceous interval. Journal of Asian Earth Sciences, 40: 710~721.

Oh C, Kim K, Philippe M, Paik I S. 2013. Mid-Cretaceous (Albian-Cenomanian) fossil woods from Hwawon-myeon in Jeollanam-do, Korea, and their palaeoclimatic implications. Cretaceous Research, 43: 40~47.

Ortloff W. 1996. Wood-anatomical evidence of fire seasonality, In: Dean J S, Meko D M, SwetnamT W, eds. Tree Rings, Environment, and Humanity. Tucson: Radiocarbon, Department of Geosciences, The University of Arizona, 89~93.

Philippe M, Thévenard F. 1996. Distribution and palaeoecology of the Mesozoic wood genus Xenoxylon: palaeoclimatological implications for the Jurassic of western Europe. Review of Palaeobotany and Palynology, 9: 353~370.

Schweingruber F H. 1988. Tree-Rings: Basics and Applications of Dendrochronology. Dordrecht: Kluwer Academic Publisher.

Shi Xiao, Sun Yuewu, Meng Fanli, Yu Jianxin, Lan Zilie. 2022. Early Cretaceous Keteleerioxylon Wood in the Songliao basin, Northeast China, and its geographic and environmental implications. Biology, 11: 1624.

Stoffel M, Hitz O M. 2008. Rockfall and snow avalanche impacts leave different anatomical signatures in tree rings of juvenile Larix decidua. Tree Physiology, 28: 1713~1720.

Sun Ge, Cao Zhengyao, Li Haomin, Wang Xinfu. 1995. Cretaceous floras. In: Li Xingxue, ed. Fossil Floras in China Through Geological Ages. Guangzhou: Guangdong Science and Technology Press, 310~344 (in Chinese).

Sze H C. 1951. Petrified wood from northern Manchuria. Science Record, 4(4): 447~450 (in Chinese with English abstract).

Sze H C, Li Xingxue. 1963. Plant fossils in China II. Mesozoic Fossil Plants in China. Beijing: Science Press (in Chinese).

Tian Ning, Zhu Zipeng, Wang Yongdong, Philippe M, Chou Chunyong, Xie Aowei. 2018a. Sequoioxylon zhangii sp. nov. (Sequoioideae, Cupressaceae s. l. ), a new coniferous wood from the Upper Cretaceous in Heilongjiang Province, Northeast China. Review of Palaeobotany and Palynology, 257: 85~94.

Tian Ning, Zhu Zipeng, Wang Yongdong, Wang Sicong. 2018b. Occurrence of Brachyoxylon Hollick et Jeffrey from the Lower Cretaceous of Zhejiang Province, southeastern China. Journal of Palaeogeography, 7(1): 8.

Tian Ning, Wang Yongdong, Zheng Shaolin, Zhu Zhipeng. 2020. White-rotting fungus with clamp-connections in a coniferous wood from the Lower Cretaceous of Heilongjiang Province, NE China. Cretaceous Research, 105: 104014.

Wang Rufeng, Wang Yufei, Chen Yongzhe. 1997. Fossil woods from Late Cretaceous of Heilongjiang Province, northeast China and their palaeoenvironmental implications. Acata Botanica Sinica, 39(10): 972~978. (in Chinese with English abstract)

Wang Yongdong, Tian Ning, Jiang Zikun, Yang Xiaoju, Ding Qiuhong. 2017. Recent advances in Mesozoic fossil wood studies in China: Diversity variations and palaeoclimate implication. Earth Science Frontiers, 24(1): 52~64 (in Chinese with English abstract).

Wimmer R. 2002. Wood anatomical features in tree-rings as indicators of environmental change. Dendrochronologia, 20(1-2): 21~36.

Xi Dangpeng, Wan Xiaoqiao, Li Guobiao, Li Gang. 2019. Cretaceous integrative stratigraphy and timescale of China. Science China Earth Sciences, 62: 256~286.

Yang Xiaoju, Zheng Shaolin. 2003. A new species of Taxodioxylon from the Lower Cretaceous of the Jixi basin, eastern Heilongjiang, China. Cretaceous Research, 24: 653~660.

Yang Xiaoju, Wang Yongdong, Zhang Wu. 2013. Occurrences of Early Cretaceous fossil woods in China: Implications for paleoclimates. Palaeogeography, Palaeoclimatology, Palaeoecology, 385: 213~220.

Yang Xiaoju, Li Jianguo. 2022. A petrified wood Brachyoxylon from the Lower Cretaceous of Bangoin, Tibet (Xizang), Southwest China. Cretaceous Research, 130: 105064.

Ying Tsünshen, Li Liangqian. 1981. Ecological distribution of endemic genera of Taxads and Conifers in China and neighbouring area in relation to phytogeographical significance. Acta Phytotaxonomica Sinica, 19(4): 408~415 (in Chinese with English abstract).

Yu Yongfu. 1995. Origin, evolution and distribution of the Taxodiaceae. Acta Phytotaxonomica Sinica, 33(4): 362~389 (in Chinese with English abstract).

Zhang Wu, Li Yong, Zheng Shaolin, Li Nan, Wang Yongdong, Yang Xiaoju, Yi Tiemei, Fu Xiaoping. 2006. Fossil Woods of China. Beijing: China Forestry Publishing House (in Chinese).

Zheng Shaolin, Zhang Wu. 1982. Fossil plants from Longzhaogou and Jixi groups in eastern Heilongjiang Province. Bulletin of the Shenyang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 5: 277~349 (in Chinese with English abstract).

Zhou Yin, Jiang Xiaomei. 1994. Wood Anatomy and Ultrastructure of Gymnospermous Woods in China. Beijing: China Forest Publishing House (in Chinese).

Zhu Zhipeng, Li Fengshuo, Xie Aowei, Tian Ning, Wang Yongdong. 2018. A new record of Early Cretaceous petrified wood with fungal infection in Xinchang, Zhejiang Province. Acta Geologica Sinica, 92: 1149~1162 (in Chinese with English abstract).

邓胜徽, 卢远征, 樊茹, 李鑫, 方琳浩, 刘璐. 2012. 中国白垩纪植物群与生物地层学. 地层学杂志, 36(2): 241~265.

丁秋红. 2000a. 黑龙江省九峰山组漠河原始云杉型木(新种). 植物学通报, 17 (专辑): 206~209.

丁秋红. 2000b. 辽宁西部义县组木材化石的研究. 古生物学报, 39(增刊): 209~219.

杜乃正. 1982. 两种黑龙江木化石. 植物学报, 24(4): 383~387.

缑旭东, 冯卓. 2021. 松柏类木化石生长轮的定量研究方法与应用. 古生物学报, 60(2): 299~313.

何德长. 1995. 大兴安岭地区晚中生代成煤植物. 北京: 煤炭工业出版社.

黑龙江省地质矿产局. 1993. 中华人民共和国地质矿产部地质专报区域地质第33号黑龙江省区域地质志. 北京: 地质出版社.

李果, 沈泽昊, 应俊生, 方精云. 2009. 中国裸子植物物种丰富度空间格局与多样性中心. 生物多样性, 17: 272~279.

李楠. 1995. 论松科植物的地理分布、起源和扩散. 植物分类学报, 33(2): 105~130.

斯行健. 1951. 东北北部木化石. 科学记录, 4(4): 447~450.

斯行健, 李星学. 1963. 中国中生代植物. 见: 中国科学院南京地质古生物所等编. 中国各门类化石, 中国植物化石第二册. 北京: 科学出版社.

孙革, 曹正尧, 李浩敏, 王鑫甫. 1995. 白垩纪植物群. 见: 李星学主编. 中国地质时期植物群. 广州: 广东科技出版社, 310~344.

王如峰, 王宇飞, 陈永喆. 1997. 黑龙江晚白垩世化石木及其古环境研究. 植物学报: 英文版, 39(10): 972~978.

王永栋, 田宁, 蒋子堃, 杨小菊, 丁秋红. 2017. 中国中生代木化石研究新进展: 多样性变化及古气候波动. 地学前缘, 24(1): 52~64.

席党鹏, 万晓樵, 李国彪, 李罡. 2019. 中国白垩纪综合地层和时间框架. 中国科学: 地球科学, 49: 257~288.

应俊生, 李良千. 1981. 中国及其邻近地区松柏类特有属的现代生态地理分布及其意义. 植物分类学报, 19(4): 408~415.

于永福. 1995. 杉科植物的起源、演化及其分布. 植物分类学报, 33(4): 362~389.

张武, 李勇, 郑少林, 李楠, 王永栋, 杨小菊, 杨家驹, 扆铁梅, 傅晓平. 2006. 中国木化石. 北京: 中国林业出版社.

郑少林, 张武. 1982. 黑龙江省东部地区龙爪沟群及鸡西群植物化石. 中国地质科学院沈阳地质研究所所刊, 5: 277~349.

周崟, 姜笑梅. 1994. 中国裸子植物材的木材解剖学及超微构造. 北京: 中国林业出版社.

朱志鹏, 李丰硕, 谢奥伟, 田宁, 王永栋. 2018. 浙江新昌早白垩世木化石新材料及内含真菌菌丝化石. 地质学报, 92: 1149~1162.



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3