毕业设计 基于STM32的四轴飞行器设计(源码+硬件+论文)

您所在的位置:网站首页 无人机硬件设计实训报告 毕业设计 基于STM32的四轴飞行器设计(源码+硬件+论文)

毕业设计 基于STM32的四轴飞行器设计(源码+硬件+论文)

2024-07-06 01:39| 来源: 网络整理| 查看: 265

文章目录 0 前言1 用到的器件2 硬件设计(原理图)3 核心软件设计i2c通信mpu6050;互补滤波;获取期望姿态;PID控制算法;输出PWM信号 4 最后

0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 毕业设计 基于STM32的四轴飞行器设计(源码+硬件+论文)

🥇学长这里给一个题目综合评分(每项满分5分)

难度系数:3分工作量:3分创新点:4分

🧿 项目分享:

https://gitee.com/sinonfin/sharing

在这里插入图片描述

1 用到的器件

在这里插入图片描述

2 硬件设计(原理图)

在这里插入图片描述

在这里插入图片描述

3 核心软件设计

这次尝试制作一个四旋翼飞控的过程

这个飞控是基于STM32,整合了MPU6050,即陀螺仪和重力加速计,但没有融合电子罗盘;

这是飞控程序的控制流程(一个执行周期):

在这里插入图片描述

i2c通信

通过GPIO模拟i2c,这样也能获得mpu6050的数据,虽然代码多了一些,但是比较好的理解i2c的原理。

STM32库实现的模拟i2c代码(注释好像因为编码问题跪了):

/******************************************************************************* // file : i2c_conf.h // MCU : STM32F103VET6 // IDE : Keil uVision4 // date £º2014.2.28 *******************************************************************************/ #include "stm32f10x.h" #define uchar unsigned char #define uint unsigned int #define FALSE 0 #define TRUE 1 void I2C_GPIO_Config(void); void I2C_delay(void); void delay5ms(void); int I2C_Start(void); void I2C_Stop(void); void I2C_Ack(void); void I2C_NoAck(void); int I2C_WaitAck(void); void I2C_SendByte(u8 SendByte); unsigned char I2C_RadeByte(void); int Single_Write(uchar SlaveAddress,uchar REG_Address,uchar REG_data); unsigned char Single_Read(unsigned char SlaveAddress,unsigned char REG_Address); /******************************************************************************* // file : i2c_conf.c // MCU : STM32F103VET6 // IDE : Keil uVision4 // date £º2014.2.28 *******************************************************************************/ #include "i2c_conf.h" #define SCL_H GPIOB->BSRR = GPIO_Pin_6 #define SCL_L GPIOB->BRR = GPIO_Pin_6 #define SDA_H GPIOB->BSRR = GPIO_Pin_7 #define SDA_L GPIOB->BRR = GPIO_Pin_7 #define SCL_read GPIOB->IDR & GPIO_Pin_6 //IDR:¶Ë¿ÚÊäÈë¼Ä´æÆ÷¡£ #define SDA_read GPIOB->IDR & GPIO_Pin_7 void I2C_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; //¿ªÂ©Êä³öģʽ GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIO_Init(GPIOB, &GPIO_InitStructure); } void I2C_delay(void) { int i=6; //ÕâÀï¿ÉÒÔÓÅ»¯ËÙ¶È £¬¾­²âÊÔ×îµÍµ½5»¹ÄÜдÈë while(i) { i--; } } void delay5ms(void) { int i=5000; while(i) { i--; } } int I2C_Start(void) { SDA_H; //II2ЭÒé¹æ¶¨±ØÐëÔÚʱÖÓÏßΪµÍµçƽµÄÇ°ÌáÏ£¬²Å¿ÉÒÔÈà Êý¾ÝÏßÐźŸıä SCL_H; I2C_delay(); if(!SDA_read) return FALSE; //SDAÏßΪµÍµçƽÔò×ÜÏßæ,Í˳ö SDA_L; I2C_delay(); if(SDA_read) return FALSE; //SDAÏßΪ¸ßµçƽÔò×ÜÏß³ö´í,Í˳ö SDA_L; I2C_delay(); return TRUE; } void I2C_Stop(void) { SCL_L; I2C_delay(); SDA_L; I2C_delay(); SCL_H; I2C_delay(); SDA_H; I2C_delay(); } void I2C_Ack(void) { SCL_L; I2C_delay(); SDA_L; I2C_delay(); SCL_H; I2C_delay(); SCL_L; I2C_delay(); } void I2C_NoAck(void) { SCL_L; I2C_delay(); SDA_H; I2C_delay(); SCL_H; I2C_delay(); SCL_L; I2C_delay(); } int I2C_WaitAck(void) //·µ»ØΪ:=1ÓÐACK, =0ÎÞACK { SCL_L; I2C_delay(); SDA_H; I2C_delay(); SCL_H; I2C_delay(); if(SDA_read) { SCL_L; I2C_delay(); return FALSE; } SCL_L; I2C_delay(); return TRUE; } void I2C_SendByte(u8 SendByte) //Êý¾Ý´Ó¸ßλµ½µÍλ// { u8 i=8; while(i--) { SCL_L; I2C_delay(); if(SendByte&0x80) // 0x80 = 1000 0000; SDA_H; else SDA_L; SendByte7) | REG_Address & 0xFFFE);//ÉèÖøßÆðʼµØÖ·+Æ÷¼þµØÖ· if(!I2C_WaitAck()) { I2C_Stop(); return FALSE; } I2C_SendByte((u8) REG_Address); //ÉèÖõÍÆðʼµØÖ· I2C_WaitAck(); I2C_Start(); I2C_SendByte(SlaveAddress+1); I2C_WaitAck(); REG_data= I2C_RadeByte(); I2C_NoAck(); I2C_Stop(); return REG_data; } mpu6050;

用写好的模拟i2c函数读取mpu6050,根据mpu6050手册的各寄存器地址,读取到了重力加速计和陀螺仪的各分量;

传感器采样率设置为200Hz,这个值是因为我电调频率为200Hz,也就是说,我的程序循环一次0.005s,一般来说,采样率高点没问题,别比执行一次闭环控制的周期长就行了;

陀螺仪量程±2000°/s,加速计量程±2g, 量程越大,取值越不精确;

这里注意,由于我们没有采用磁力计,而陀螺仪存在零偏,所以最终在yaw方向上没有绝对的参考系,不能建立绝对的地理坐标系,这样最好的结果也仅仅是在yaw上存在缓慢漂移。

互补滤波;

融合时,陀螺仪的积分运算很大程度上决定了飞行器的瞬时运动情况,而重力加速计通过长时间的累积不断矫正陀螺仪产生的误差,最终得到准确的机体姿态。

这里我采用Madgwick提供的UpdateIMU算法来得到姿态角所对应的四元数,之后只需要经过简单运算便可转换为实时欧拉角。

#define sampleFreq 512.0f // sample frequency in Hz #define betaDef 0.1f // 2 * proportional gain volatile float beta = betaDef; volatile float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f; float invSqrt(float x); void MadgwickAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az) { float recipNorm; float s0, s1, s2, s3; float qDot1, qDot2, qDot3, qDot4; float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3; // Rate of change of quaternion from gyroscope qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz); qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy); qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx); qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx); // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation) if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) { // Normalise accelerometer measurement recipNorm = invSqrt(ax * ax + ay * ay + az * az); ax *= recipNorm; ay *= recipNorm; az *= recipNorm; // Auxiliary variables to avoid repeated arithmetic _2q0 = 2.0f * q0; _2q1 = 2.0f * q1; _2q2 = 2.0f * q2; _2q3 = 2.0f * q3; _4q0 = 4.0f * q0; _4q1 = 4.0f * q1; _4q2 = 4.0f * q2; _8q1 = 8.0f * q1; _8q2 = 8.0f * q2; q0q0 = q0 * q0; q1q1 = q1 * q1; q2q2 = q2 * q2; q3q3 = q3 * q3; // Gradient decent algorithm corrective step s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay; s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az; s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az; s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay; recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude s0 *= recipNorm; s1 *= recipNorm; s2 *= recipNorm; s3 *= recipNorm; // Apply feedback step qDot1 -= beta * s0; qDot2 -= beta * s1; qDot3 -= beta * s2; qDot4 -= beta * s3; } // Integrate rate of change of quaternion to yield quaternion q0 += qDot1 * (1.0f / sampleFreq); q1 += qDot2 * (1.0f / sampleFreq); q2 += qDot3 * (1.0f / sampleFreq); q3 += qDot4 * (1.0f / sampleFreq); // Normalise quaternion recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); q0 *= recipNorm; q1 *= recipNorm; q2 *= recipNorm; q3 *= recipNorm; } float invSqrt(float x) { float halfx = 0.5f * x; float y = x; long i = *(long*)&y; i = 0x5f3759df - (i>>1); y = *(float*)&i; y = y * (1.5f - (halfx * y * y)); return y; } 获取期望姿态;

也就是遥控部分了,让用户介入控制。

在这里插入图片描述 通过HC-06蓝牙模块接连到STM32串口1,再无线连接到控制端,这样我们就可以获得控制端不断发送的数据包了,并实时更新期望姿态角,这里只需要注意输出的姿态角和实时姿态角方向一致以及数据包的校验就行了。

PID控制算法;

由于简单的线性控制不可能满足四轴飞行器这个灵敏的系统,引入PID控制器来更好的纠正系统。

简介:PID实指“比例proportional”、“积分integral”、“微分derivative”,这三项构成PID基本要素。每一项完成不同任务,对系统功能产生不同的影响。 在这里插入图片描述 以Pitch为例:

在这里插入图片描述

error为期望角减去实时角度得到的误差;

iState为积分i参数对应累积过去时间里的误差总和;

if语句限定iState范围,繁殖修正过度;

微分d参数为当前姿态减去上次姿态,估算当前速度(瞬间速度);

总调整量为p,i,d三者之和;

这样,P代表控制系统的响应速度,越大,响应越快。

I,用来累积过去时间内的误差,修正P无法达到的期望姿态值(静差);

D,加强对机体变化的快速响应,对P有抑制作用。

PID各参数的整定需要综合考虑控制系统的各个方面,才能达到最佳效果。

输出PWM信号

PID计算完成之后,便可以通过STM32自带的定时资源很容易的调制出四路pwm信号,采用的电调pwm格式为50Hz,高电平持续时间0.5ms-2.5ms;

我以1.0ms-2.0ms为每个电机的油门行程,这样,1ms的宽度均匀的对应电调的从最低到最高转速。

至此,一个用stm32和mpu6050搭建的飞控系统就算实现了。

4 最后

包含内容

在这里插入图片描述

🧿 项目分享:

https://gitee.com/sinonfin/sharing



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3