朴素贝叶斯算法原理及Spark MLlib调用实例(Scala/Java/Python)

您所在的位置:网站首页 数据质量管理十步流程 朴素贝叶斯算法原理及Spark MLlib调用实例(Scala/Java/Python)

朴素贝叶斯算法原理及Spark MLlib调用实例(Scala/Java/Python)

2024-06-11 11:54| 来源: 网络整理| 查看: 265

朴素贝叶斯

算法介绍:

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。

朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我们会选择条件概率最大的类别作为此待分类项应属的类别。

朴素贝叶斯分类的正式定义如下:

1、设 为一个待分类项,而每个a为x的一个特征属性。

2、有类别集合 。

3、计算 。

4、如果 ,则 。

那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做:

1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。

2、统计得到在各类别下各个特征属性的条件概率估计。即 

3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导:

 

因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有:

 

spark.ml现在支持多项朴素贝叶斯和伯努利朴素贝叶斯。

参数:

featuresCol:

类型:字符串型。

含义:特征列名。

labelCol:

类型:字符串型。

含义:标签列名。

modelType:

类型:字符串型。

含义:模型类型(区分大小写)。

predictionCol:

类型:字符串型。

含义:预测结果列名。

probabilityCol:

类型:字符串型。

含义:用以预测类别条件概率的列名。

rawPredictionCol:

类型:字符串型。

含义:原始预测。

smoothing:

类型:双精度型。

含义:平滑参数。

thresholds:

类型:双精度数组型。

含义:多分类预测的阀值,以调整预测结果在各个类别的概率。

示例:

Scala:

import org.apache.spark.ml.classification.NaiveBayes import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator // Load the data stored in LIBSVM format as a DataFrame. val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") // Split the data into training and test sets (30% held out for testing) val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3), seed = 1234L) // Train a NaiveBayes model. val model = new NaiveBayes() .fit(trainingData) // Select example rows to display. val predictions = model.transform(testData) predictions.show() // Select (prediction, true label) and compute test error val evaluator = new MulticlassClassificationEvaluator() .setLabelCol("label") .setPredictionCol("prediction") .setMetricName("accuracy") val accuracy = evaluator.evaluate(predictions) println("Accuracy: " + accuracy) Java:

import org.apache.spark.ml.classification.NaiveBayes; import org.apache.spark.ml.classification.NaiveBayesModel; import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; import org.apache.spark.sql.SparkSession; // Load training data Dataset dataFrame = spark.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt"); // Split the data into train and test Dataset[] splits = dataFrame.randomSplit(new double[]{0.6, 0.4}, 1234L); Dataset train = splits[0]; Dataset test = splits[1]; // create the trainer and set its parameters NaiveBayes nb = new NaiveBayes(); // train the model NaiveBayesModel model = nb.fit(train); // compute accuracy on the test set Dataset result = model.transform(test); Dataset predictionAndLabels = result.select("prediction", "label"); MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator() .setMetricName("accuracy"); System.out.println("Accuracy = " + evaluator.evaluate(predictionAndLabels)); Python:

from pyspark.ml.classification import NaiveBayes from pyspark.ml.evaluation import MulticlassClassificationEvaluator # Load training data data = spark.read.format("libsvm") \ .load("data/mllib/sample_libsvm_data.txt") # Split the data into train and test splits = data.randomSplit([0.6, 0.4], 1234) train = splits[0] test = splits[1] # create the trainer and set its parameters nb = NaiveBayes(smoothing=1.0, modelType="multinomial") # train the model model = nb.fit(train) # compute accuracy on the test set result = model.transform(test) predictionAndLabels = result.select("prediction", "label") evaluator = MulticlassClassificationEvaluator(metricName="accuracy") print("Accuracy: " + str(evaluator.evaluate(predictionAndLabels)))

 



【本文地址】


今日新闻


推荐新闻


    CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3