专题 求数列的通项公式

您所在的位置:网站首页 数学数列求和用公式法的题 专题 求数列的通项公式

专题 求数列的通项公式

2024-07-01 17:46| 来源: 网络整理| 查看: 265

\(\mathbf{{\large {\color{Red} {欢迎到学科网下载资料学习}} } }\)【【高分突破系列】 高二数学下学期同步知识点剖析精品讲义! \(\mathbf{{\large {{\color{Red} {跟贵哥学数学,so \quad easy!}} }}}\)

选择性必修第二册同步提高,难度3颗星!

模块导图 知识剖析

求数列的通项公式是高考常考的一专题,形式多样,解题方法很多,常见的有累加法、累乘法、待定系数法、迭代法、取倒数法等,课外延申的还有不动点法等,不管什么方法,一定要理解解题方法的本质,清楚每种方法的适用范围,避免出现“看得懂,模仿做还行,独立思考就含糊”的情况.  

经典例题 【方法一】观察法

\({\color{Red}{适用范围:}}\)给出数列的前几项,猜测通项公式; \({\color{Red}{方法:}}\)通过观察,得知数列各项之间数值的关系(比如数值之间的差或商成一定规律)或数值结构特点(比如数值的正负,分式,平方)从而求得通项公式.

  【典题1】写出下列数列\(\{a_n\}\)的一个通项公式 \((1)-7,14,-21,28,…\) \((2) \dfrac{1}{4}, \dfrac{3}{8}, \dfrac{5}{16}, \dfrac{7}{32} \ldots\) \((3) 2,5,10,17,26,…\) \((4) 32,332,3332,33332,….\) \((5) 1,2,2,3,3,4,4,….\) 【解析】\({\color{Red}{分解结构法:}}\)注意数值的结构,看其是否可视为两个或多个数列组合而成. \((1)\)数列\(-7 ,14 ,-21 ,28\),…每项可分解成符号和项的绝对值相乘得到,

故\(a_{n}=(-1)^{n} 7 n\); \((2)\)数列\(\dfrac{1}{4}, \dfrac{3}{8}, \dfrac{5}{16}, \dfrac{7}{32} \ldots\)…每项可分解成分子和分母相除得到,

故\(a_n=(2n-1)2^{n+1}\); \({\color{Red}{变形法:}}\)数列本身特点不明显,但通过加减乘除某个数之类方式变形成“规律感更强”的数列. \((3)\)数列\(2 ,5 ,10 ,17 ,26\),…中若每项减去\(1\),则变成\(1\),\(4\),\(9\),\(16\),\(25\),…, 这些数都是完全平方数,易想到数列的通项是\(n^2\), 则原数列只需要在这基础上加回\(1\)便可,即\(a_n=n^2+1\). \((4)\)数列\(2\),\(32\),\(332\),\(3332\),\(33332\),….中若每项加上\(1\),则变成\(3\),\(33\),\(333\),\(3333\),\(33333\),….,再每项乘以\(3\),变成\(9\),\(99\),\(999\),\(9999\),\(99999\),… 其中\(9=10-1\),\(99=10^2-1\),\(999=10^3-1\),\(9999=10^4-1\),\(99999=10^5-1\), 则其通项\(b_n=10^{n+1}-1\), 要求原数列的通项公式, 则“逆回去”,除以\(3\)再减\(1\)可得\(a_{n}=\dfrac{b_{n}}{3}-1=\dfrac{10^{n+1}-1}{3}-1=\dfrac{10^{n+1}-4}{3}\). \({\color{Red}{分奇偶项}}\) \((5)\)数列\(1\),\(2\),\(2\),\(3\),\(3\),\(4\),\(4\),… , 相邻每项之间没什么关系,若分奇偶性来看,就简单多了, 可得奇数项为\(1\),\(2\),\(3\),\(4\),… , 可得\(a_{n}=\dfrac{n+1}{2}\).偶数项为\(2\),\(3\),\(4\),… , 可得\(a_{n}=\dfrac{n+2}{2}\). 则该数列通项公式\(a_{n}= \begin{cases}\dfrac{n+1}{2}, & n \text { 为奇数 } \\ \dfrac{n+2}{2}, & n \text { 为偶数 }\end{cases}\). 【点拨】观察法主要是依靠“数感”,以上讲解的“分解结构法”“变形法”可有助于观察,它对后面讲到的利用数学归纳法求解通项公式有用.  

巩固练习

1 (★)数列\(1,-\dfrac{\sqrt{2}}{2}, \dfrac{1}{2},-\dfrac{\sqrt{2}}{4}, \dfrac{1}{4}\), …的一个通项公式为(  ) A.\(\left(-\dfrac{1}{2}\right)^{n-1}\) \(\qquad \qquad\) B.\(\left(-\dfrac{\sqrt{2}}{2}\right)^{n}\) \(\qquad \qquad\) C.\((-1)^{n}\left(\dfrac{\sqrt{2}}{2}\right)^{n-1}\) \(\qquad \qquad\) D.\((-1)^{n+1}\left(\dfrac{\sqrt{2}}{2}\right)^{n-1}\)  

2 (★)下列可作为数列\(1\),\(2\),\(1\),\(2\),\(1\),\(2\),…的通项公式的是(  ) A.\(a_{n}=\dfrac{1+(-1)^{n-1}}{2}\) \(\qquad \qquad\)B.\(a_{n}=\dfrac{3+(-1)^{n}}{2}\) \(\qquad \qquad\) C.\(a_{n}=2-\sin \dfrac{n \pi}{2}\) \(\qquad \qquad\) D.\(a_{n}=2-\cos [(n-1) \pi]\)  

3 (★★)写出以下各数列的一个通项公式. \((1)1,-\dfrac{1}{2}, \dfrac{1}{4},-\dfrac{1}{8}, \ldots\) \((2)10 ,9 ,8 ,7 ,6 ,…\) \((3)0 ,3 ,8 ,15 ,24 ,…\) \((4) \dfrac{1}{2}, \dfrac{5}{6}, \dfrac{11}{12}, \dfrac{19}{20}, \dfrac{31}{30}\) \((5)4 ,44 ,444 ,4444 ,….\)  

参考答案

1.\(D\) 2.\(B\) 3.\((1) a_{n}=(-1)^{n+1} \times \dfrac{1}{2^{n-1}}\)

\((2) a_n=11-n\) \((3) a_n=n^2-1\) \((4)a_{n}=1-\dfrac{1}{n(n+1)}\) \((5) a_{n}=\dfrac{4}{9} \times\left(10^{n}-1\right)\).  

【方法二】\(a_n\)与\(S_n\)的关系公式法

\({\color{Red}{适用范围:}}\)若得知\(S_n\)或\(a_n\)与\(S_n\)的关系式,求数列通项公式. \({\color{Red}{方法:}}\)利用\(a_n\)与\(S_n\)的关系\(a_{n}=\left\{\begin{array}{cc} S_{1} & n=1 \\ S_{n}-S_{n-1} & n \geq 2 \end{array}\right.\),注意分类讨论,最后确定\(a_1\)是否满足\(a_n=f(n)\)\((n≥2)\).  

【典题1】已知数列\(\{a_n\}\)的前\(n\)项和\(S_n\),满足关系\(\lg \left(S_{n}+1\right)=n\).求\(\{a_n\}\)的通项公式. 【解析】\(\because \lg \left(S_{n}+1\right)=n\), \(\therefore S_{n}=10^{n}-1\) 当\(n≥2\)时,\(a_{n}=S_{n}-S_{n-1}=9 \times 10^{n-1}\) 当\(n=1\)时,\(a_1=S_1=9\)满足\(a_{n}=9 \times 10^{n-1}\), \({\color{Red}{ (确定a_1是否满足上式)}}\) \(\therefore a_{n}=9 \times 10^{n-1}\left(n \in N^{*}\right)\). \({\color{Red}{(最后等式才由n≥2变成n∈N^*)}}\)  

【典题2】已知数列\(\{a_n\}\)}的前\(n\)项和\(S_n\),\(a_1=1\),满足下列条件 ①\(∀n∈N^*\),\(a_n>0\);\(\qquad \qquad\) ②点\((a_n ,S_n)\)在函数\(f(x)=\dfrac{x^{2}+x}{2}\)的图象上; 求数列\(\{a_n\}\)的通项\(a_n\)及前\(n\)项和\(S_n\). 【解析】由题意\(S_{n}=\dfrac{a_{n}^{2}+a_{n}}{2}\), 当\(n≥2\)时,\(a_{n}=S_{n}-S_{n-1}=\dfrac{a_{n}^{2}+a_{n}}{2}-\dfrac{a_{n-1}^{2}+a_{n-1}}{2}\), 整理,得\(\left(a_{n}+a_{n-1}\right)\left(a_{n}-a_{n-1}-1\right)=0\), \({\color{Red}{(因式分解)}}\) 又\(∀n∈N^*\),\(a_n>0\),所以\(a_{n}+a_{n-1} \neq 0\) 即\(a_{n}-a_{n-1}=1\), 又\(a_1=1\), \(∴\)数列\(\{a_n\}\)是首项为\(1\),公比为\(1\)的等差数列, \(∴a_n=n\),\(S_{n}=\dfrac{n^{2}+n}{2}\).  

【典题3】已知\(\{a_n\}\)中,\(a_1=1\),\(a_{n}=\dfrac{2 S_{n}^{2}}{2 S_{n}-1}\)\((n≥ 2)\),求\(a_n\). 【解析】当\(n≥2\)时,\(a_{n}=S_{n}-S_{n-1}\) \(\therefore S_{n}-S_{n-1}=\dfrac{2 S_{n}^{2}}{2 S_{n}-1}\) \(\therefore S_{n-1}-S_{n}=2 S_{n} S_{n-1}\) 两边同除以\(S_{n} S_{n-1}\),得\(\dfrac{1}{S_{n}}-\dfrac{1}{S_{n-1}}=2\) \({\color{Red}{ (该变式技巧了解下)}}\) \({\color{Red}{ (上两题是“消去”S_n得到数列\{a_n\}递推公式,该题“消去”a_n得到数列\{S_n\}的递推公式)}}\) \(∴\)数列\(\left\{\dfrac{1}{S_{n}}\right\}\)为等差数列,公差为\(2\),首项为\(1\). \(\therefore \dfrac{1}{S_{n}}=1+2(n-1)=2 n-1\), 解得\(S_{n}=\dfrac{1}{2 n-1}\), \(\therefore a_{n}=S_{n}-S_{n-1}=\dfrac{1}{2 n-1}-\dfrac{1}{2 n-3}=\dfrac{-2}{(2 n-1)(2 n-3)}\)\((n≥ 2)\) \({\color{Red}{(不要漏了大前提n≥ 2)}}\) \(a_1=1\)不满足\(a_{n}=\dfrac{-2}{(2 n-1)(2 n-3)}\), \(\therefore a_{n}= \begin{cases}1, & n=1 \\ \dfrac{-2}{(2 n-1)(2 n-3)}, & n \geq 2\end{cases}\). 【点拨】当题中得知\(S_n\)或\(a_n\)与\(S_n\)的关系式,则可利用公式\(a_{n}=\left\{\begin{array}{cc} S_{1} & n=1 \\ S_{n}-S_{n-1} & n \geq 2 \end{array}\right.\),消去\(a_n\)与\(S_n\),得到对应的递推公式进而求解\(a_n\),但最后都要注意确定\(a_1\)是否满足\(a_n=f(n)(n≥2)\).  

巩固练习

1 (★)已知数列\(\{a_n\}\)的前\(n\)项和\(S_n\)满足\(S_n=n^2+n-1\),求数列\(\{a_n\}\)的通项公式.    

2 (★★)已知无穷数列\(\{a_n\}\)的前\(n\)项和\(S_n\),并且\(a_n+S_n=1\),求\(\{a_n\}\)的通项公式.    

3 (★★)已知数列\(\{a_n\}\)的前\(n\)项和\(S_n\),满足\(a_2=-4\),\(2 S_{n}=n\left(a_{n}-7\right)\).求\(a_1\)和数列\(\{a_n\}\)的通项公式;    

4 (★★★)设数列\(\{a_n\}\)的前\(n\)项和\(S_n\),已知\(a_1=2\),\(a_2=8\),\(S_{n+1}+4 S_{n-1}=5 S_{n}(n \geq 2)\),求数列\(\{a_n\}\)的通项公式;    

参考答案

1.\(a_{n}=\left\{\begin{array}{c} 1, n=1 \\ 2 n, n \geq 2 \end{array}\right.\) 2.\(a_{n}=\left(\dfrac{1}{2}\right)^{n}\) 3.\(a_1=-7\),\(a_n=3n-10(n∈N^*)\) 4.\(a_{n}=2^{2 n-1}\)  

【方法三】累加法

\({\color{Red}{适用范围:}}\)递推式为\(a_{n+1}=a_{n}+f(n)\). \({\color{Red}{方法:}}\)得到\(\rfloor a_{n+1}-a_{n}=f(n)\),利用累加的形式求出\(a_n\).  

【典题1】已知数列\(\{a_n\}\)满足\(a_1=2\),\(a_{n+1}=a_{n}+\ln \left(1+\dfrac{1}{n}\right)\),求\(a_n\). 【解析】由条件知:\(a_{n+1}-a_{n}=\ln \left(1+\dfrac{1}{n}\right)=\ln \dfrac{n+1}{n}=\ln (n+1)-\ln n\) \(∴n≥2\)时 \(\left\{\begin{aligned} a_{n}-a_{n-1} &=\ln n-\ln (n-1) \\ a_{n-1}-a_{n-2} &=\ln (n-1)-\ln (n-2) \\ a_{4}-a_{3} &=\ln 4-\ln 3 \\ a_{3}-a_{2} &=\ln 3-\ln 2 \\ a_{2}-a_{1} &=\ln 2-\ln 1 \end{aligned}\right.\), 把以上\(n-1\)个式子累加得\(a_{n}-a_{1}=\ln n-\ln 1=\ln n\), \(\therefore a_{n}=a_{1}+\ln n=\ln n+2 \quad(n \geq 2)\), \(a_1=2\)也满足\(a_{n}=\ln n+2\), \(\therefore a_{n}=\ln n+2 \quad\left(n \in N^{*}\right)\).  

【典题2】已知数列\(\{a_n\}\)满足\(a_{n+1}=a_{n}+2 \times 3^{n}+1\),\(a_1=3\),求数列\(\{a_n\}\)的通项公式. 【解析】由\(a_{n+1}=a_{n}+2 \times 3^{n}+1\)得\(a_{n+1}-a_{n}=2 \times 3^{n}+1\) \(∴n≥2\)时, \(\begin{aligned} &a_{n}=\left(a_{n}-a_{n-1}\right)+\left(a_{n-1}-a_{n-2}\right)+\cdots+\left(a_{3}-a_{2}\right)+\left(a_{2}-a_{1}\right)+a_{1} \\ &=\left(2 \times 3^{n-1}+1\right)+\left(2 \times 3^{n-2}+1\right)+\cdots+\left(2 \times 3^{2}+1\right)+\left(2 \times 3^{1}+1\right)+3 \\ &=2\left(3^{n-1}+3^{n-2}+\cdots+3^{2}+3^{1}\right)+(n-1)+3 \\ &=2 \dfrac{3\left(1-3^{n-1}\right)}{1-3}+(n-1)+3 \\ &=3^{n}+n-1 \end{aligned}\) 而\(a_1=3\)也满足\(a_n=3^n+n-1\), \(∴a_n=3^n+n-1 (n∈N^*)\).  

巩固练习

1 (★)数列\(\{a_n\}\)满足\(a_1=3\),\(a_{n+1}-a_{n}=2 n-8\left(n \in N^{*}\right)\),则\(a_8=\)\(\underline{\quad \quad }\).     2 (★★)将正整数按一定的规则排成了如图所示的三角形数阵.根据这个排列规则,数阵中第\(20\)行从左至右的第\(3\)个数是 \(\underline{\quad \quad}\) . image.png    

3 (★★)已知数列\(\{a_n\}\)满足\(a_{1}=\dfrac{1}{2}\),\(a_{n+1}=a_{n}+\dfrac{1}{n^{2}+n}\),求\(a_n\)    

4 (★★★)已知数列\(\{a_n\}\)的前\(n\)项和\(S_n\),\(S_n+a_n=n+2\),\(n∈N^*\). (1)证明:数列\(\left\{a_{n}-1\right\}\)为等比数列; (2)若数列\(\left\{b_{n}\right\}\)满足\(a_{n}=b_{n+1}-b_{n}+1\),\(b_1=1\),证明:\(b_n0\)且\(S_{n}=\dfrac{1}{2}\left(a_{n}+\dfrac{n}{a_{n}}\right)\), 求数列\(\left\{a_{n}\right\}\)通项公式. 【解析】\(\because S_{n}=\dfrac{1}{2}\left(a_{n}+\dfrac{n}{a_{n}}\right)\) 当\(n=1\)时,有\(S_{1}=\dfrac{1}{2}\left(a_{1}+\dfrac{1}{a_{1}}\right) \Rightarrow a_{1}^{2}=1 \Rightarrow a_{1}=1\), 当\(n=2\)时, 有\(S_{2}=\dfrac{1}{2}\left(a_{2}+\dfrac{2}{a_{2}}\right) \Rightarrow 1+a_{2}=\dfrac{1}{2}\left(a_{2}+\dfrac{2}{a_{2}}\right) \Rightarrow a_{2}^{2}+2 a_{2}=2\)\(\Rightarrow\left(a_{2}+1\right)^{2}=3 \Rightarrow a_{2}=\sqrt{3}-1\) 当n=3时,有\(S_{3}=\dfrac{1}{2}\left(a_{3}+\dfrac{3}{a_{3}}\right) \Rightarrow \sqrt{3}+a_{3}=\dfrac{1}{2}\left(a_{3}+\dfrac{3}{a_{3}}\right) \Rightarrow a_{3}^{2}+2 \sqrt{3} a_{3}=3\) \(\Rightarrow\left(a_{3}+\sqrt{3}\right)^{2}=6 \Rightarrow a_{3}=\sqrt{6}-\sqrt{3}\) \({\color{Red}{ (在计算的过程中也会发现一些规律,有助于猜想)}}\) 由\(a_{1}=1=\sqrt{1}-\sqrt{0}, a_{2}=\sqrt{3}-\sqrt{1}, a_{3}=\sqrt{6}-\sqrt{3}\)可猜想\(a_{n}=\sqrt{\dfrac{n(n+1)}{2}}-\sqrt{\dfrac{n(n-1)}{2}}\). \({\color{Red}{ (通过观察法可得数列1,3,6…的通项是\dfrac{n(n+1)}{2},数列0,1,3…的通项是\dfrac{n(n-1)}{2})}}\) 以下利用数学归纳法证明, ①\(n=1\)时,结论显然成立; ②假设\(n=k\)时,结论成立,即\(a_{k}=\sqrt{\dfrac{k(k+1)}{2}}-\sqrt{\dfrac{k(k-1)}{2}}\), 则\(n=k+1\)时,有\(a_{k+1}=S_{k+1}-S_{k}=\dfrac{1}{2}\left(a_{k+1}+\dfrac{k+1}{a_{k+1}}\right)-\dfrac{1}{2}\left(a_{k}+\dfrac{k}{a_{k}}\right)\), \(\therefore a_{k+1}=\dfrac{k+1}{a_{k+1}}-\left(a_{k}+\dfrac{k}{a_{k}}\right)=\dfrac{k+1}{a_{k+1}}-\sqrt{2 k(k+1)}\) \(\therefore a_{k+1}^{2}+\sqrt{2 k(k+1)} a_{k+1}=k+1 \Rightarrow\left(a_{k+1}+\sqrt{\dfrac{k(k+1)}{2}}\right)^{2}=\dfrac{(k+2)(k+1)}{2}\) \(\therefore a_{k+1}=\sqrt{\dfrac{(k+2)(k+1)}{2}}-\sqrt{\dfrac{k(k+1)}{2}}\) \({\color{Red}{ (其计算过程与算a_1,a_2 ,a_3时类似) }}\) 即\(n=k+1\)时,结论成立. 综上,\(a_{n}=\sqrt{\dfrac{n(n+1)}{2}}-\sqrt{\dfrac{n(n-1)}{2}}\).    

巩固练习

1 (★★)设\(0



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3