皮肌炎自身特异性抗体与皮肌炎相关性恶性肿瘤的研究进展

您所在的位置:网站首页 抗体阴性皮肌炎严重吗 皮肌炎自身特异性抗体与皮肌炎相关性恶性肿瘤的研究进展

皮肌炎自身特异性抗体与皮肌炎相关性恶性肿瘤的研究进展

2024-07-11 08:59| 来源: 网络整理| 查看: 265

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2023 Dec 28; 48(12): 1890–1898. Chinese. doi: 10.11817/j.issn.1672-7347.2023.220594PMCID: PMC10930743PMID: 38448383

Language: Chinese | English

皮肌炎自身特异性抗体与皮肌炎相关性恶性肿瘤的研究进展Research progress on the dermatomyositis specific autoantibodies and malignancy associated dermatomyositis许 悦, 杨 扬, and 范 松青许 悦

中南大学湘雅二医院病理科, 长沙 410011

Find articles by 许 悦杨 扬

中南大学湘雅二医院病理科, 长沙 410011

Find articles by 杨 扬范 松青

中南大学湘雅二医院病理科, 长沙 410011

Find articles by 范 松青Monitoring Editor: 郭 征Author information Article notes Copyright and License information PMC Disclaimer 中南大学湘雅二医院病理科, 长沙 410011Corresponding author. 范松青,Email: nc.ude.usc@nafgniqgnos, ORCID: 0000-0002-1486-9909 许悦,Email: nc.ude.usc@110112812, ORCID: 0009-0004-3620-6788Received 2022 Nov 23Copyright ©Journal of Central South University (Medical Science). All rights reserved.Abstract

皮肌炎是一种自身免疫性疾病,且常伴发恶性肿瘤。超过50%的皮肌炎患者体内存在肌炎自身特异性抗体。皮肌炎自身特异性抗体[抗迁移抑制因子(migration inhibitory factor,Mi)-2抗体、抗核小体蛋白(nuclear matrix protein,NXP)-2抗体、抗转录中介因子(transcription intermediary factor,TIF)1-γ抗体、抗小泛素样修饰物激活酶(small ubiquitin-like modifier activating enzyme,SAE)抗体]在皮肌炎相关性恶性肿瘤的发病机制中扮演着重要角色。揭示皮肌炎自身特异性抗体在皮肌炎并发恶性肿瘤中的作用,可为准确评估皮肌炎患者发展为恶性肿瘤的风险提供重要依据,也可为临床诊断皮肌炎和精准的个体化治疗提供新思路。

Keywords: 皮肌炎, 自身特异性抗体, 恶性肿瘤, 迁移抑制因子-2, 核小体蛋白-2, 转录中介因子1-γ, 小泛素样修饰物激活酶Abstract

Dermatomyositis (DM) is an autoimmune disease often complicated with malignant tumors. More than 50% of DM patients have myositis specific autoantibodies in their bodies. DM specific autoantibodies [including anti-migration inhibitory factor (Mi)-2 antibody, anti-nuclear matrix protein (NXP)-2 antibody, anti-transcription intermediary factor (TIF) 1-γ antibody, and anti-small ubiquitin like modifier activating enzyme (SAE) antibody] play important roles in the pathogenesis of malignancy associated DM. Revealing the role of DM specific autoantibodies in the development of malignant tumors in DM patients can provide important evidence for accurately assessing the risk of developing malignant tumors in DM patients, and also provide new ideas for clinical diagnosis of DM and precise treatment.

Keywords: dermatomyositis, specific autoantibody, malignant tumors, migration inhibitory factor-2, nuclear matrix protein-2, transcription intermediary factor 1-γ, small ubiquitin-like modifier activating enzyme

皮肌炎(dermatomyositis,DM)属于特发性炎症性肌病,该病不仅表现为皮肤病变,还可能涉及肌肉、关节或肺部,呈现多系统的症状。DM主要分为典型皮肌炎(classical dermatomyositis,CDM)、无肌病性皮肌炎(amyopathic dermatomyositis,ADM)和低肌病性皮肌炎(hypomyopathic dermatomyositis,HDM),其中CDM和ADM较为常见。研究[1]发现:在诊断DM后的2年内,9.9%的CDM患者发生恶性肿瘤。对包括400名患者的2个大型美国DM队列进行回顾性分析,发现48名患者(占总队列的12.0%)患有53种恶性肿瘤,这53种癌症中有21种(40%)是在DM症状出现后1年内诊断出来的[2]。DM与恶性肿瘤的发生存在相关性。

1.  DM相关性恶性肿瘤

DM发病后的5年内出现的恶性肿瘤被定义为DM相关性恶性肿瘤(malignancy associated dermatomyositis,MA-DM)。DM人群患恶性肿瘤的风险为普通人群的5~7倍,且近年来DM患者并发恶性肿瘤的患病率逐渐升高[1]。然而,DM与恶性肿瘤相关的确切机制尚不明确,目前认为可能与免疫抑制治疗增加DM患者发生恶性肿瘤的风险,以及DM引发的免疫反应有关[2]。此外,恶性肿瘤检查技术的发展也会使恶性肿瘤的检出率增加。

DM患者在诊断前后1~2年内患恶性肿瘤的风险最高,此后风险逐渐降低,而CDM和高龄都是DM发病后2年内MA-DM的重要独立危险因素[1, 3]。在DM中,CDM和ADM较为普遍,CDM与ADM合并恶性肿瘤的类型相似。MA-DM最常发生于呼吸系统、血液系统、泌尿系统和生殖系统[1]。MA-DM的类型在不同地区存在差异。在西方国家,最常见的MA-DM是肺癌、卵巢癌、乳腺癌和结直肠癌,近年来非霍奇金淋巴瘤的发生率也有所上升。在中国,最常见的MA-DM有肺癌、乳腺癌和胃癌,其次是结直肠癌、卵巢癌及鼻咽癌,特别是在中国南方地区鼻咽癌更为常见[3-5](图1)。癌症的类型也有性别差异,女性最常见的恶性肿瘤是乳腺癌,男性最常见的是肺癌、鼻咽癌和胃癌[6-9]。

Open in a separate window图1

皮肌炎相关性恶性肿瘤的主要类型

Figure 1 Main type of malignancy associated dermatomyositis

2.  DM自身特异性抗体与MA-DM

超过50%的DM患者体内存在肌炎特异性自身抗体(myositis specific autoantibodies,MSA)。自身免疫反应在MA-DM的发病机制中扮演着重要角色。值得注意的是,在DM中发现的大多数MSA并不常见于其他炎症性肌病,而是DM独有的。此外,DM患者体内的MSA具有个体差异,其临床表现也不尽相同[10]。深入探讨MSA在MA-DM中的作用具有重要的临床意义。

2.1. 抗Mi-2抗体与MA-DM

成人DM中约有20%的患者有抗迁移抑制因子(migration inhibitory factor,Mi)-2抗体[11]。在儿童DM(juvenile dermatmyositis,JDM)队列中也发现了抗Mi-2抗体,但频率较成人低,为4%~10%[11-12]。这种自身抗体与Gottron丘疹、眼眶周围皮疹、角质层过度生长、V型和披肩征标志皮疹以及其他DM的皮肤症状密切相关[13-14]。与其他DM患者相比,有抗Mi-2抗体的DM患者有更好的疾病预后,对类固醇治疗的反应更佳,并且恶性肿瘤出现的风险也相对更低。然而,值得注意的是,具有抗Mi-2抗体的DM患者存在更高的复发可能性[11, 15]。抗Mi-2抗体不仅与DM的临床特征相关,也可能通过多种途径参与DM的发病。研究[11-17]表明,Mi-2蛋白在未分化或再生的肌细胞和伴有束周萎缩的肌束中表达持续上调。Mi-2蛋白在诱导抗Mi-2抗体的产生和机体产生免疫反应的过程中发挥重要的作用。作为核小体重塑与组蛋白去乙酰化(nucleosome remodeling and deacetylase,NuRD)的成分之一,Mi-2与NuRD的其他成分共同发挥作用。NuRD是在染色质介导的转录调控中发挥作用的化合物之一,能够改变染色质的结构,使蛋白质分子更靠近DNA,从而控制DNA的获取,参与多条信号通路(图2)。NuRD由多个亚单位组成,包括组蛋白脱乙酰酶(histone deacetylase,HDAC)1/2、视网膜母细胞瘤相关蛋白(retinoblastoma-associated protein,RBAP)46/48、转移相关蛋白2(metastasis associated protein 2,MTA2)、甲基化CpG结合结构域蛋白3(methyl-CpG binding domain protein 3,MBD3)、Mi-2a和Mi-2b等[16-17]。Mi-2是一种包含SWI2/SNF2解旋酶的ATP依赖的核小体重塑因子,它利用ATP水解带来的能量来破坏DNA和构成核小体核心的组蛋白之间的相互作用,改变染色质结构,从而参与对转录的调控[16-17]。在NuRD中Mi-2b具有致癌功能,可以抑制抑癌基因的表达,激活或诱导癌基因的表达,因此Mi-2表达上调会促进肿瘤的生长[18-20]。具有抗Mi-2抗体的DM患者可抑制Mi-2b的致癌作用,所以相比于其他DM患者,具有抗Mi-2抗体的患者MA-DM发生率更低。

Open in a separate window图2

Mi-2参与病毒感染或肿瘤发生的机制

Figure 2 Mechanism of Mi-2 involvement in viral infection or tumorigenesis When the organism is infected or develops a tumor, both non-specific and specific immune responses are activated. Following complement activation, the MAC is deposited on the vascular wall, directly damaging endothelial cells. CD4+ T cells, B cells, macrophages, and other immune cells collectively participate in this process, leading to a reduction in capillary beds, dilation of remaining capillary lumens, subsequent perimysial atrophy, and consequent muscle damage. Mi-2 expression is continuously upregulated in muscle bundles with perimysial atrophy, stimulating the production of autoantibodies. The NuRD complex plays a crucial role in transcription. As one of its components, the generation of Mi-2 antibodies can influence the function of the NuRD complex, affecting transcription and consequently impacting downstream signaling pathways. MAC: Membrane attack complex; MHC-II: Major histocompatibility complex II; Mi-2a/CHD3: Chromodomain helicase DNA binding 3; Mi-2b/CHD4: Chromodomain helicase DNA binding 4; HDAC: Histone deacetylase; RBAP46: Retinoblastoma-associated protein 46; RBAP48: Retinoblastoma-associated protein 48; MBD2: Methyl-CpG-binding domain protein 2; MBD3: Methyl-CpG-binding domain protein 3; MTA: Metastasis-associated protein.

2.2. 抗NXP-2抗体与MA-DM

核小体蛋白(nuclear matrix protein,NXP)-2,也称MORC3,被认为是与自身免疫性疾病和癌症有关的蛋白质和抗病毒因子。研究[21-24]发现,抗NXP-2抗体与恶性肿瘤存在显著相关性,然而,这一关联仅在男性中表现为风险的增加。对具有抗NXP-2抗体的DM患者进行分析,发现软组织钙化在年轻人中更为常见,而恶性肿瘤在老年人中更为普遍[25-26]。NXP-2/MORC3包含ATP酶结构域、CW锌指结构域,其中CW结构域主要参与对NXP-2/MORC3催化活性的调控[27-35]。在CW结构域的“允许”下,ATP酶可以与其他物质结合并处于激活状态。NXP-2/MORC3定位于早幼粒细胞白血病核体(promyelocytic leukemia-nuclear bodies,PML-NBs)中,PML-NBs位于细胞核内。NXP-2/MORC3与癌症通过多个信号通路发生关联[25-28],如pre-B细胞受体(pre-B cell receptor,pre-BCR)信号通路以及酪氨酸激酶样孤儿素受体1(receptor tyrosine kinase-like orphan receptor 1,ROR1)信号通路(图3)。Pre-BCR、ROR1激活后会进一步激活蛋白激酶B(protein kinase B,AKT)或丝裂原活化蛋白激酶激酶(mitogen-activated protein kinase kinase,MEK)/细胞外调节蛋白激酶(extracellular regulated protein kinase,ERK)信号通路,促进细胞增殖,使细胞活性增加[27-35]。Pre-BCR信号通路与ROR1信号通路相互协调,当pre-BCR信号通路被抑制时,ROR1信号通路就会作为其补偿途径,而NXP-2/MORC3可以抑制ROR1通路[27-35]。定位于PML-NBs的NXP-2/MORC3能够招募肿瘤抑制因子p53至PML-NBs,NXP-2/MORC3的ATP酶可激活p53[27-35],而p53是调控致癌信号和诱导细胞衰老的关键转录因子。NXP-2/MORC3也与炎症通路有关。当病毒入侵机体细胞后,细胞过度表达ICP0。ICP0是一种抵抗宿主抗病毒机制的多功能的早期蛋白。ICP0可以作用于PML-NBs的NXP-2/MORC3将NXP-2/MORC3降解,同时也可以激活干扰素(interferon,IFN),最终导致细胞增殖、存活和迁移[25, 27-35]。因此含抗NXP-2抗体的患者体内NXP-2/MORC3的功能被抑制,有利于肿瘤的增殖[28-35]。同时,研究[25, 27-35]已验证具有抗NXP-2抗体的患者中IFN明显上调,且炎症通路被激活。

Open in a separate window图3

NXP-2/MORC3参与抑制肿瘤细胞增殖或活性的机制

Figure 3 Mechanism of NXP-2/MORC3 involvement in inhibiting tumor cell proliferation or activity In eukaryotic cells, the cell nucleus is divided into multiple regions, including chromosomal regions, nucleoli, and promyelocytic leukemia nuclear bodies (PML-NBs). PML-NBs constitute a domain primarily formed by the PML protein, and the small ubiquitin-like modifier (SUMO) family covalent modification of PML is an essential step for the maturation of PML-NBs. MORC3 localizes to mature PML-NBs and exerts its function. MORC3 can suppress the ROR1 pathway and excessive expression of interferons (IFN), recruit certain tumor suppressor factors such as P53, inhibit cell proliferation and survival, and induce apoptosis. However, both ICP0 and the virus itself can directly inhibit the activity of MORC3. Solid arrows represent promotion, dotted arrows represent suppression. PML: Promyelocytic leukemia protein; PML-NBs: Promyelocytic leukemia nuclear bodies; SUMO: Small ubiquitin-like modifier; NXP-2/MORC3: Nuclear matrix protein 2/microrchidia family CW-type zinc finger 3; ICP0: Infected cell protein 0; IFN: Interferon; JAK: Janus kinase; STAT: Signal transducer and activator of transcription; P53: Tumor protein p53; PI3K: Phosphoinositide 3-kinase; AKT: Protein kinase B; MEK/ERK: Mitogen-activated protein kinase kinase/extracellular signal-regulated kinase; ROR1: Receptor tyrosine kinase-like orphan receptor 1; Pre-BCR: Pre-B cell receptor.

2.3. 抗TIF1-γ抗体与MA-DM

转录中介因子(transcription intermediary factor,TIF)1-γ是带有结构域的转录因子家族TIF1中的一员。作为一种核蛋白,TIF1-γ具有广泛的生物学功能,包括细胞分化、增殖和转录调节等方面,并且与机体的先天免疫有关。研究[36]表明抗TIF1-γ抗体与MA-DM显著相关,并且抗TIF1-γ抗体诊断MA-DM的敏感性和特异性均较高。抗TIF1-γ抗体与严重皮肤病的发生密切相关,尤其表现为头皮、面部、V型颈部和背部的弥漫性红斑,以及银屑病样皮损[21-23]。在含抗TIF1-γ抗体的DM患者中,雷诺现象、关节炎、软组织钙化和间质性肺疾病并不太常见[21-23, 37]。TIF1-γ既可以充当肿瘤抑制因子,亦可以作为肿瘤促进因子。转化生长因子(transforming growth factor,TGF)-β信号转导在维持细胞增殖稳态中起重要的作用。TGF-β/Smad4信号通路在肿瘤发展中具有双重作用:在正常细胞中或肿瘤早期,去泛素化的Smad4与磷酸化的Smad2/3形成复合物,通过在细胞核内调节靶基因的转录和在G1/S检查点发挥细胞周期阻滞作用,抑制肿瘤的形成;而随着肿瘤的发展,TGF-β也可以通过Smad4诱导上皮-间充质转化,其信号通路反而支持肿瘤细胞的增殖和转移[37-41]。Ectodermin外胚层蛋白/TIF1-γ(Ecto)作为Smad信号的内源性拮抗剂,可以使Smad4泛素化,失去调节转录的功能,并抑制TGF-β信号转导(图4)[37-42]。在一些恶性肿瘤中,当TIF1-γ失活或表达下调时,可能会进一步促进肿瘤的发展。此外,TIF1-γ通过抑制和降解Wnt/β连环蛋白通路中的b-连环蛋白(b-连环蛋白被认为是肿瘤发生的基础),从而抑制肿瘤的发生[37, 42]。

Open in a separate window图4

TIF1-γ参与肿瘤发生和发展的机制

Figure 4 Mechanism of TIF1-γ involvement in tumor occurrence and development TGF-β acts on the TβRI and TβRII receptors, phosphorylating Smad2/3. FAM, as a deubiquitinase, deubiquitinates ubiquitinated Smad4. Following deubiquitination by FAM, Smad4 gains the ability to form a complex with phosphorylated Smad2/3 and enters the cell nucleus. Conversely, ectodermin/TIF1-γ exhibits an opposing function; within the cell nucleus, it reduces the interaction between Smad4 and Smad2/3, leading to the dissociation of the formed complex. Ubiquitination of Smad4 by Ecto results in its functional inactivation, thereby blocking the TGF-β signaling pathway. Ubiquitinated Smad4 also needs to shuttle back to the cytoplasm, where its functionality is restored through the deubiquitinating action of FAM. TGF-β: Transforming growth factor beta; TβR: Transforming growth factor beta receptor; Smad: Small mother against decapentaplegic; Ecto: Ectodermin; TIF1-γ: Transcription intermediary factor 1-gamma; FAM(USP9X): Ubiquitin-specific protease 9, X-linked; P: Phosphorylation; Ub: Ubiquitination.

2.4. 抗SAE抗体与MA-DM

在欧洲高加索人肌炎队列的DM患者中发现了抗小泛素样修饰物激活酶(small ubiquitin-like modifier activating enzyme,SAE)抗体[43],但在亚洲DM患者中抗SAE抗体并不常见,因此推测DM患者是否具有抗SAE抗体与遗传和地区有关。研究[22, 36]指出,携带抗SAE抗体的DM患者更有可能出现皮肤黏膜以外的临床表现,如吞咽困难,但抗SAE抗体与恶性肿瘤无关。然而,也有研究[12]发现,抗SAE抗体阳性的患者相较于阴性患者发生恶性肿瘤的风险增加。最近一项研究[44]也表明,抗SAE抗体阳性的患者发生恶性肿瘤的风险显著增加,并且所有抗SAE抗体阳性DM患者的肿瘤类型局限在宫颈癌、肺癌、食管癌或直肠腺癌。由于这些研究仅限于某一地区或小样本病例,因此仍需多中心及大样本研究进一步探究,以证实抗SAE抗体阳性是否与肿瘤相关以及是否导致肿瘤的信号通路异常[12, 44]。

3.  DM自身特异性抗体在MA-DM诊断和治疗中的应用

准确识别DM自身特异性抗体对于选择DM的后续治疗方案以及预测预后均有重要价值,但如何准确识别特异性的抗体仍在探索中。DM自身特异性抗体的正确识别依赖检测技术的进步及临床医生的经验。因为具有不同DM自身特异性抗体的DM患者临床表现具有特异性(表1)[12, 42, 45],所以临床医生可根据DM患者个体的临床表征,选择高度怀疑的DM自身特异性抗体进行针对性检测。DM自身特异性抗体的检测技术尚未成熟,现有的检测方法包括Nanostring分析、免疫沉淀法、线性免疫印迹法等。研究[46-49]表明,Nanostring分析对于抗-Mi-2抗体和抗-TIF1-γ抗体的检测更加敏感,而免疫沉淀法和线性免疫印迹法联合使用对抗-SAE抗体的检测更加有效。因此,选择具有针对性的MSA检测技术可以显著降低假阳性率和假阴性率。研发标准化、系统性的特异性MSA检测技术非常重要和急迫。但是,由于病例的有限性及技术手段的局限性,这也会是一个艰难和漫长的过程。

表1

具有各种DM自身特异性抗体的患者的临床表现特征

Table 1 Clinical manifestations of patients with various DM specific autoantibodies

DM自身特异性抗体肌无力程度肌肉活检

Gottron征和

日光疹程度

皮肤黏膜其他

特殊表现

CK水平其他表现抗-Mi-2抗体

重度肌无力

(近端)

MAC主要沉积在

肌纤维的肌膜

++

甲周点状出血、

牙龈周围红斑

+++抗-NXP-2抗体

轻度肌无力

(近端)

MAC在肌膜和毛细血管上均有沉积++持续性皮肤溃疡、钙质沉积++吞咽困难、外周水肿、肌痛抗-TIF1-γ抗体

轻度肌无力

(近端)

MAC主要沉积在

毛细血管

+++银屑样病变+抗-SAE抗体

中度肌无力

(近端/远端)

持续性皮肤溃疡、钙质沉积++吞咽困难Open in a separate window

DM:皮肌炎;Mi-2: 迁移抑制因子-2;NXP-2:核小体蛋白-2;TIF:转录中介因子;SAE:小泛素样修饰物激活酶;MAC:攻膜复合物;CK:肌酸激酶。

目前DM的治疗通常是糖皮质激素和免疫抑制剂的联合治疗,但这种治疗方法容易导致DM的复发,对于顽固性的肌炎效果并不显著,因此研究者也在进行新药的开发。有研究[50-51]表明,IFN参与DM的发病过程,而JAK作为其下游通路,使用JAK抑制剂能有效改善肌肉萎缩和血管的病变,对于顽固性肌炎也有一定的帮助,这无疑给MA-DM的治疗提供了一个思路。对于这类患者,治疗皮肤疾病的同时也需要预防和治疗并发的肿瘤,针对恶性肿瘤的发病机制研发新的药物或许是一个好的选择。

4. 结 语

DM作为一种异质性的自身免疫性疾病,其病症主要表现为皮肤病变和皮肤外症状。近年来,DM与恶性肿瘤的关系日益凸显,DM患者发生恶性肿瘤的风险显著高于普通人群。因此,这类患者应进行更严格和频繁的体检,特别是在确诊DM后的2年内或与恶性肿瘤密切相关的特异性抗体呈阳性时。为了及早发现潜在的恶性肿瘤,推荐采用CT扫描作为筛选手段,最佳的方式是根据最常受累器官、地域高发、性别高发的情况进行针对性的筛查,以提早进行预防和治疗。进一步的研究应重点关注风险因素的探索,深入挖掘特异性MSA的作用机制,增进对MA-DM发生机制的理解,开发更为敏感的非侵入性筛查恶性肿瘤的方法。此外,亟需研发标准化且具有更高敏感性的特异性MSA检测技术,以及根据抗体和表型的组合实现对DM的个体化诊断和治疗。这一系列措施有助于在未来推动人类更深层次地理解DM,为其治疗提供更为精准和有效的手段。

基金资助

国家自然科学基金(81972838)。

This work was supported by the National Natural Science Foundation of China (81972838).

利益冲突声明

作者声称无任何利益冲突。

作者贡献

许悦 文献收集及论文撰写;杨扬 图片绘制;范松青 论文指导。所有作者阅读并同意最终的文本。

Footnotes

http://dx.chinadoi.cn/10.11817/j.issn.1672-7347.2023.220594

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2023121890.pdf

参考文献1. Bowerman K, Pearson DR, Okawa J, et al.. Malignancy in dermatomyositis: a retrospective study of 201 patients seen at the University of Pennsylvania[J]. J Am Acad Dermatol, 2020, 83(1): 117-122. 10.1016/j.jaad.2020.02.061. [PubMed] [CrossRef] [Google Scholar]2. Leatham H, Schadt C, Chisolm S, et al.. Evidence supports blind screening for internal malignancy in dermatomyositis: data from 2 large US dermatology cohorts[J/OL]. Medicine, 2018, 97(2): e9639[2022-10-02]. 10.1097/MD.0000000000009639. [PMC free article] [PubMed] [CrossRef] [Google Scholar]3. Khanna U, Galimberti F, Li YM, et al.. Dermatomyositis and malignancy: should all patients with dermatomyositis undergo malignancy screening?[J]. Ann Transl Med, 2021, 9(5): 432. 10.21037/atm-20-5215. [PMC free article] [PubMed] [CrossRef] [Google Scholar]4. Liu Y, Xu LL, Wu HL, et al.. Characteristics and predictors of malignancy in dermatomyositis: analysis of 239 patients from Northern China[J]. Oncol Lett, 2018, 16(5): 5960-5968. 10.3892/ol.2018.9409. [PMC free article] [PubMed] [CrossRef] [Google Scholar]5. Hsu JL, Liao MF, Chu CC, et al.. Reappraisal of the incidence, various types and risk factors of malignancies in patients with dermatomyositis and polymyositis in Taiwan[J]. Sci Rep, 2021, 11(1): 4545. 10.1038/s41598-021-83729-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]6. Fang YF, Wu YJ, Kuo CF, et al.. Malignancy in dermatomyositis and polymyositis: analysis of 192 patients[J]. Clin Rheumatol, 2016, 35(8): 1977-1984. 10.1007/s10067-016-3296-8. [PubMed] [CrossRef] [Google Scholar]7. Noda T, Iijima M, Noda S, et al.. Gene expression profile of inflammatory myopathy with malignancy is similar to that of dermatomyositis rather than polymyositis[J]. Intern Med, 2016, 55(18): 2571-2580. 10.2169/internalmedicine.55.6706. [PubMed] [CrossRef] [Google Scholar]8. Leal JM, de Souza GH, Marsillac PF, et al.. Skin manifestations associated with systemic diseases-Part II[J]. An Bras Dermatol, 2021, 96(6): 672-687. 10.1016/j.abd.2021.06.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]9. Field C, Goff BA. Dermatomyositis—key to diagnosing ovarian cancer, monitoring treatment and detecting recurrent disease: case report[J]. Gynecol Oncol Rep, 2017, 23: 1-3. 10.1016/j.gore.2017.11.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]10. Shao C, Li S, Sun YX, et al.. Clinical characteristics and prognostic analysis of Chinese dermatomyositis patients with malignancies[J/OL]. Medicine, 2020, 99(34): e21899[2022-10-02]. 10.1097/MD.0000000000021899. [PMC free article] [PubMed] [CrossRef] [Google Scholar]11. Targoff IN, Reichlin M. The association between Mi-2 antibodies and dermatomyositis[J]. Arthritis Rheum, 1985, 28(7): 796-803.10.1002/art. 1780280711. [PubMed] [Google Scholar]12. Wolstencroft PW, Fiorentino DF. Dermatomyositis clinical and pathological phenotypes associated with myositis-specific autoantibodies[J]. Curr Rheumatol Rep, 2018, 20(5): 28. 10.1007/s11926-018-0733-5. [PubMed] [CrossRef] [Google Scholar]13. Cassius C, Le Buanec H, Bouaziz JD, et al.. Biomarkers in adult dermatomyositis: tools to help the diagnosis and predict the clinical outcome[J]. J Immunol Res, 2019, 2019: 9141420. 10.1155/2019/9141420. [PMC free article] [PubMed] [CrossRef] [Google Scholar]14. Kwiatkowska D, Reich A. The significance of autoantibodies in juvenile dermatomyositis[J]. Biomed Res Int, 2021, 2021: 5513544. 10.1155/2021/5513544. [PMC free article] [PubMed] [CrossRef] [Google Scholar]15. Ahmad A, Attoti Y, Bernstein KA. A man with recurrent pneumonitis: a rare case of interstitial lung disease associated with anti-Mi-2 beta-specific dermatomyositis[J/OL]. Cureus, 2021, 13(12): e20334[2022-10-02]. 10.7759/cureus.20334. [PMC free article] [PubMed] [CrossRef] [Google Scholar]16. Hasan N, Ahuja N. The emerging roles of ATP-dependent chromatin remodeling complexes in pancreatic cancer[J]. Cancers, 2019, 11(12): 1859. 10.3390/cancers11121859. [PMC free article] [PubMed] [CrossRef] [Google Scholar]17. Gamarra N, Narlikar GJ. Collaboration through chromatin: motors of transcription and chromatin structure[J]. J Mol Biol, 2021, 433(14): 166876. 10.1016/j.jmb.2021.166876. [PMC free article] [PubMed] [CrossRef] [Google Scholar]18. Chang CL, Huang CR, Chang SJ, et al.. CHD4 as an important mediator in regulating the malignant behaviors of colorectal cancer[J]. Int J Biol Sci, 2021, 17(7): 1660-1670. 10.7150/ijbs.56976. [PMC free article] [PubMed] [CrossRef] [Google Scholar]19. Wang YJ, Chen Y, Bao L, et al.. CHD4 promotes breast cancer progression as a coactivator of hypoxia-inducible factors[J]. Cancer Res, 2020, 80(18): 3880-3891. 10.1158/0008-5472.CAN-20-1049. [PMC free article] [PubMed] [CrossRef] [Google Scholar]20. Alendar A, Berns A. Sentinels of chromatin: chromodomain helicase DNA-binding proteins in development and disease[J]. Genes Dev, 2021, 35(21/22): 1403-1430. 10.1101/gad.348897.121. [PMC free article] [PubMed] [CrossRef] [Google Scholar]21. Fujimoto M, Watanabe R, Ishitsuka Y, et al.. Recent advances in dermatomyositis-specific autoantibodies[J]. Curr Opin Rheumatol, 2016, 28(6): 636-644. 10.1097/BOR.0000000000000329. [PubMed] [CrossRef] [Google Scholar]22. Betteridge Z, McHugh N. Myositis-specific autoantibodies: an important tool to support diagnosis of Myositis[J]. J Intern Med, 2016, 280(1): 8-23. 10.1111/joim.12451. [PubMed] [CrossRef] [Google Scholar]23. Pacheco M, Ferreira H, Silva C, et al.. Antinuclear antibody (ANA) and anti-Mi-2-alpha positive dermatomyositis hinting a cancer diagnosis[J/OL]. Cureus, 2022, 14(2): e21844[2022-10-02]. 10.7759/cureus.21844. [PMC free article] [PubMed] [CrossRef] [Google Scholar]24. Palterer B, Vitiello G, Carraresi A, et al.. Bench to bedside review of myositis autoantibodies[J]. Clin Mol Allergy, 2018, 16(1): 5. 10.1186/s12948-018-0084-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]25. Cao XJ, Zhang MJ, Lu ZJ, et al.. Multiple neurological manifestations in a patient with systemic lupus erythematosus and anti-NXP-2-positive myositis: a case report[J/OL]. Medicine, 2021, 100(10): e25063[2022-10-02]. 10.1097/MD.0000000000025063. [PMC free article] [PubMed] [CrossRef] [Google Scholar]26. Hong GJ, Qiu H, Wang C, et al.. The emerging role of MORC family proteins in cancer development and bone homeostasis[J]. J Cell Physiol, 2017, 232(5): 928-934. 10.1002/jcp.25665. [PubMed] [CrossRef] [Google Scholar]27. Turnier JL, Pachman LM, Lowe L, et al.. Comparison of lesional juvenile myositis and lupus skin reveals overlapping yet unique disease pathophysiology[J]. Arthritis Rheumatol, 2021, 73(6): 1062-1072. 10.1002/art.41615. [PMC free article] [PubMed] [CrossRef] [Google Scholar]28. Desai VP, Chouaref J, Wu HY, et al.. The role of MORC3 in silencing transposable elements in mouse embryonic stem cells[J]. Epigenetics Chromatin, 2021, 14(1): 49. 10.1186/s13072-021-00420-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]29. Sloan E, Orr A, Everett RD. MORC3, a component of PML nuclear bodies, has a role in restricting herpes simplex virus 1 and human cytomegalovirus[J]. J Virol, 2016, 90(19): 8621-8633. 10.1128/JVI.00621-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]30. Zhang Y, Klein BJ, Cox KL, et al.. Mechanism for autoinhibition and activation of the MORC3 ATPase[J]. Proc Natl Acad Sci USA, 2019, 116(13): 6111-6119.10.1073/pnas. 1819524116. [PMC free article] [PubMed] [Google Scholar]31. Wang H, Zhang L, Luo QH, et al.. MORC protein family-related signature within human disease and cancer[J]. Cell Death Dis, 2021, 12(12): 1112. 10.1038/s41419-021-04393-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]32. Marasandra Ramesh H, Gude SS, Venugopal S, et al.. The role of Myositis-specific autoantibodies in the dermatomyositis spectrum[J/OL]. Cureus, 2022, 14(3): e22978[2023-10-02]. 10.7759/cureus.22978. [PMC free article] [PubMed] [CrossRef] [Google Scholar]33. Satoh M, Tanaka S, Ceribelli A, et al.. A comprehensive overview on myositis-specific antibodies: new and old biomarkers in idiopathic inflammatory myopathy[J]. Clin Rev Allergy Immunol, 2017, 52(1): 1-19. 10.1007/s12016-015-8510-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]34. Alandijany T. Host intrinsic and innate intracellular immunity during herpes simplex virus type 1 (HSV-1) infection[J]. Front Microbiol, 2019, 10: 2611. 10.3389/fmicb.2019.02611. [PMC free article] [PubMed] [CrossRef] [Google Scholar]35. Takahashi K, Yoshida N, Murakami N, et al.. Dynamic regulation of p53 subnuclear localization and senescence by MORC3[J]. Mol Biol Cell, 2007, 18(5): 1701-1709.10.1091/mbc. e06-08-0747 . [PMC free article] [PubMed] [Google Scholar]36. Betteridge ZE, Gunawardena H, McHugh NJ. Novel autoantibodies and clinical phenotypes in adult and juvenile myositis[J]. Arthritis Res Ther, 2011, 13(2): 209. 10.1186/ar3275. [PMC free article] [PubMed] [CrossRef] [Google Scholar]37. Zhao M, Mishra L, Deng CX. The role of TGF-β/SMAD4 signaling in cancer[J]. Int J Biol Sci, 2018, 14(2): 111-123. 10.7150/ijbs.23230. [PMC free article] [PubMed] [CrossRef] [Google Scholar]38. De Vooght J, Vulsteke JB, De Haes P, et al.. Anti-TIF1-γ autoantibodies: warning lights of a tumour autoantigen[J]. Rheumatology, 2020, 59(3): 469-477.10.1093/rheumatology/kez572. [PubMed] [Google Scholar]39. Yang G, Yang X. Smad4-mediated TGF-beta signaling in tumorigenesis[J]. Int J Biol Sci, 2010, 6(1): 1-8. 10.7150/ijbs.6.1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]40. Pao S, Lin LT, Chen YH, et al.. Repression of Smad4 by microRNA-1285 moderates TGF-β-induced epithelial-mesenchymal transition in proliferative vitreoretinopathy[J/OL]. PLoS One, 2021, 16(8): e0254873[2022-10-02]. 10.1371/journal.pone.0254873. [PMC free article] [PubMed] [CrossRef] [Google Scholar]41. Sun RZ, Li MM, He N, et al.. Molecular characterization, expression profiles of SMAD4, SMAD5 and SMAD7 genes and lack of association with litter size in Tibetan sheep[J]. Animals, 2022, 12(17): 2232. 10.3390/ani12172232. [PMC free article] [PubMed] [CrossRef] [Google Scholar]42. Xue JF, Chen YH, Wu YM, et al.. Tumour suppressor TRIM33 targets nuclear β-catenin degradation[J]. Nat Commun, 2015, 6: 6156. 10.1038/ncomms7156. [PMC free article] [PubMed] [CrossRef] [Google Scholar]43. Kishi T, Tani YM, Okiyama N, et al.. Anti-SAE autoantibody-positive Japanese patient with juvenile dermatomyositis complicated with interstitial lung disease—a case report[J]. Pediatr Rheumatol Online J, 2021, 19(1): 34. 10.1186/s12969-021-00532-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]44. Lu X, Peng QL, Wang GC. The role of cancer-associated autoantibodies as biomarkers in paraneoplastic myositis syndrome[J]. Curr Opin Rheumatol, 2019, 31(6): 643-649. 10.1097/BOR.0000000000000641. [PubMed] [CrossRef] [Google Scholar]45. Mammen AL, Allenbach Y, Stenzel W, et al.. 239th ENMC international workshop: classification of dermatomyositis, Amsterdam, the Netherlands, 14-16 December 2018[J]. Neuromuscul Disord, 2020, 30(1): 70-92. 10.1016/j.nmd.2019.10.005. [PubMed] [CrossRef] [Google Scholar]46. Hamaguchi Y, Kuwana M, Hoshino K, et al.. Clinical correlations with dermatomyositis-specific autoantibodies in adult Japanese patients with dermatomyositis: a multicenter cross-sectional study[J]. Arch Dermatol, 2011, 147(4): 391-398. 10.1001/archdermatol.2011.52. [PubMed] [CrossRef] [Google Scholar]47. Peterson LK, Jaskowski TD, La’ulu SL, et al.. Antibodies to small ubiquitin-like modifier activating enzyme are associated with a diagnosis of dermatomyositis: results from an unselected cohort[J]. Immunol Res, 2018, 66(3): 431-436. 10.1007/s12026-018-9006-7. [PubMed] [CrossRef] [Google Scholar]48. Preusse C, Eede P, Heinzeling L, et al.. NanoString technology distinguishes anti-TIF-1γ+ from anti-Mi-2+ dermatomyositis patients[J/OL]. Brain Pathol, 2021, 31(3): e12957[2022-10-02]. 10.1111/bpa.12957. [PMC free article] [PubMed] [CrossRef] [Google Scholar]49. Hodgkinson LM, Wu TT, Fiorentino DF. Dermatomyositis autoantibodies: how can we maximize utility?[J]. Ann Transl Med, 2021, 9(5): 433. 10.21037/atm-20-5175. [PMC free article] [PubMed] [CrossRef] [Google Scholar]50. Cobos GA, Femia A, Vleugels RA. Dermatomyositis: an update on diagnosis and treatment[J]. Am J Clin Dermatol, 2020, 21(3): 339-353. 10.1007/s40257-020-00502-6. [PubMed] [CrossRef] [Google Scholar]51. Ladislau L, Suárez-Calvet X, Toquet S, et al.. JAK inhibitor improves type I interferon induced damage: proof of concept in dermatomyositis[J]. Brain, 2018, 141(6): 1609-1621. 10.1093/brain/awy105. [PubMed] [CrossRef] [Google Scholar]


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3