拿来就能用!Dijkstra 算法实现快递路径优化

您所在的位置:网站首页 快递发货路线地图 拿来就能用!Dijkstra 算法实现快递路径优化

拿来就能用!Dijkstra 算法实现快递路径优化

2024-06-29 08:49| 来源: 网络整理| 查看: 265

作者 | 李秋键

责编 | 伍杏玲

出品 | AI科技大本营(ID:rgznai100)

近几年来,快递行业发展迅猛,其中的程序设计涉及到运送路径的最优选择问题,下面我们尝试模拟实现快递路径优化问题,假设为快递公司设计快递投递路线优化程序:

(1)每个市有中转分发点,有些城市之间有直通路线,有些没有直通路线;(2)城市间的运费计算公式为:距离*1;

(3)假设投递包裹的尺寸、重量都一样,每条运输线路有个运力上限(即只能运输多少个包裹)。

按照第(1)点要求,假设一共有7个城市,分别为A、B、C、D、E、F、G。

按照的第(2)点和第(3)点要求,假设各城市间满足的路线布局和费用,以及运力上限分别如下图所示:

实现的效果如下:

程序运行结果图(运力上限优化)

程序思路

(1) 建立各城市对象;

(2) 建立城市对象之间的关联,关联值包括四点(城市路径起点,城市路径终点,路径距离值,路径运力上限)。如城市A和城市B之间的关联值为[A,B,3,4];

(3) 考虑到包裹尺寸、重量都是一样的,故假设其单位量都为1,即可以不用考虑。随机产生需要运输的当天包裹m个,产生的每个包裹对象的参量属性包括如下三点(包裹变量序号,包裹运输起点,包裹运输终点)。比如产生包裹1属性为[1,A,G];

(4) 系统的可视化;

(5) 路径优化算法的设计。

基于上面分析,我们可以开始着手模拟设计“快递投递路线优化程序”,该系统主要包含三个基本模块:

1、总体框架程序,其中包括城市对象(城市路径起点,城市路径终点,路径距离值,路径运力上限),包裹对象(包裹变量序号,包裹运输起点,包裹运输终点),包裹数等基本参数设计;

2、可视化路径选择,将路径选择的结果输出后,按照基本的流程图形式进行全部输出;

3、优化算法设计,找到费用最低的路径方法。

数据结构设计

首先是程序预准备,包括定义宏、结构体。

参数定义:

这里定义城市最大数量为20。按照我们设定的7个城市,足够使用。

#define MAX_VERTEX_NUM 20

定义INFINITE,用来当做无穷大,即表示两个城市之间没有直接路线或达到运力上限直连路线作废。

#define INFINITE 10000 

图结构体的定义:

参数包括城市数vertexNum,城市名称vertex[MAX_VERTEX_NUM]数组,各城市路线距离值数组arc[MAX_VERTEX_NUM][MAX_VERTEX_NUM],各城市路线运力上限数组limit[MAX_VERTEX_NUM][MAX_VERTEX_NUM],各城市运力上限数组count[MAX_VERTEX_NUM][MAX_VERTEX_NUM]。

代码如下:

typedef struct  {     intvertexNum;     charvertex[MAX_VERTEX_NUM];     intarc[MAX_VERTEX_NUM][MAX_VERTEX_NUM];         intlimit[MAX_VERTEX_NUM][MAX_VERTEX_NUM];         intcount[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; }Graph,*PGraph;

存储距离和路径辅助结构体建立:

其中包括距离distance和路径数组path[MAX_VERTEX_NUM]。

代码如下:

//辅助数组中的元素定义 typedef struct {     int distance;     int path[MAX_VERTEX_NUM]; }ArrayNode;

双向图的建立:

按照上文设定好的题目条件,建立双向网络,存储着城市属性,包括城市路线距离值arc参数、运力上限限流值limit参数、统计各路线已经使用的情况count参数。

代码如下:

void createdGraph(PGraph g)  {      int i,j;      g->vertexNum=7;      for(i=0;ivertexNum;i++)          g->vertex[i]='A'+i;      for(i=0;ivertexNum;i++)          for(j=0;jvertexNum;j++)              g->arc[i][j]=0;      for(i=0;ivertexNum;i++)          for(j=0;jvertexNum;j++)              g->limit[i][j]=0; //这个属性是每条路的距离长度     g->arc[0][4]=3;      g->arc[0][2]=5;      g->arc[1][2]=4;      g->arc[1][3]=4;      g->arc[1][4]=4;      g->arc[1][5]=3;      g->arc[2][5]=5;      g->arc[2][6]=3;     g->arc[3][4]=4;      g->arc[3][5]=7;      g->arc[5][6]=5;     //双向     g->arc[2][0]=5;     g->arc[2][1]=4;     g->arc[3][1]=4;     g->arc[4][0]=3;     g->arc[4][1]=4;     g->arc[4][3]=4;     g->arc[5][1]=3;     g->arc[5][2]=5;     g->arc[5][3]=7;     g->arc[6][2]=3;     g->arc[6][5]=5; //这个属性是每条路上的限流,即运力上限     g->limit[0][4]=4;      g->limit[0][2]=7;      g->limit[1][2]=4;      g->limit[1][3]=5;      g->limit[1][4]=6;      g->limit[1][5]=7;      g->limit[2][5]=7;      g->limit[2][6]=6;     g->limit[3][4]=5;      g->limit[3][5]=8;      g->limit[5][6]=6;     g->limit[2][0]=7;     g->limit[2][1]=4;     g->limit[3][1]=5;     g->limit[4][0]=4;     g->limit[4][1]=6;     g->limit[4][3]=5;     g->limit[5][1]=7;     g->limit[5][2]=7;     g->limit[5][3]=8;     g->limit[6][2]=6;     g->limit[6][5]=6; //这个属性是计算该条路走过了多少次,计数,判断会不会超过限流(运力上限),超过限流(运力上限)就把距离设成很大的数,即不考虑。初始情况下都是为0     for(i=0;ivertexNum;i++)          for(j=0;jvertexNum;j++)              g->count[i][j]=0;     g->count[0][4]=0;      g->count[0][2]=0;      g->count[1][2]=0;      g->count[1][3]=0;      g->count[1][4]=0;      g->count[1][5]=0;      g->count[2][5]=0;      g->count[2][6]=0;     g->count[3][4]=0;      g->count[3][5]=0;      g->count[5][6]=0;     g->count[2][0]=0;     g->count[2][1]=0;     g->count[3][1]=0;     g->count[4][0]=0;     g->count[4][1]=0;     g->count[4][3]=0;     g->count[5][1]=0;     g->count[5][2]=0;     g->count[5][3]=0;     g->count[6][2]=0;     g->count[6][5]=0; }

算法设计

这里使用的算法是最短路径算法——Dijkstra。但考虑到路线的双向问题、限流问题等,需要对算法进行优化和修改。

算法描述

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想)[1],直到扩展到终点为止。

基本思想:

通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)[2]。此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)[3]。初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是”起点s到该顶点的路径”[4]。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径[5]。然后,再从U中找出路径最短的顶点,并将其加入到S中[6];接着,更新U中的顶点和顶点对应的路径……重复该操作,直到遍历完所有顶点。

操作步骤:

(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为”起点s到该顶点的距离”[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞[7]。

(2) 从U中选出”距离最短的顶点k”,并将顶点k加入到S中[8];同时,从U中移除顶点k。

(3) 更新U中各个顶点到起点s的距离[9]。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离[10];例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。

(4) 重复步骤(2)和(3),直到遍历完所有顶点[11]。

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

最短路径算法代码:

(1)首先是计算from到各个顶点的直接距离,即初始化shortestPath数组:

for(i=0;ivertexNum;i++){          if(from==i){              shortestPath[i].distance=0;              shortestPath[i].path[0]=i;              flag[from]=1;          }          else if(g->arc[from][i]>0){              shortestPath[i].path[0]=from;              shortestPath[i].path[1]=i;              shortestPath[i].distance=g->arc[from][i];          }else              shortestPath[i].distance=INFINITE;      }

(2)然后每次求出一个最短路径:

while(nvertexNum){          //选择shortestPath中距离最小的,求出from到这个顶点的最短路径          index=-1;          for(i=0;ivertexNum;i++){              if(i==from)                  continue;              if(flag[i]==0 && index==-1 && shortestPath[i].distance!=INFINITE)                  index=i;              if(flag[i]==0 && index!=-1 && shortestPath[i].distancearc[index][i]>0 && g->arc[index][i]+shortestPath[index].distancearc[index][i]+shortestPath[index].distance;                  //修改路径                  j=0;                  while(1){                      shortestPath[i].path[j]=shortestPath[index].path[j];                      if(shortestPath[index].path[j]==index)                          break;                      j++;                  }                  shortestPath[i].path[j+1]=i;              }          }          n++;      }

(3)输出结果:

printf("%c到%c的最短路径长度是:%d\n",from+'A',to+'A',shortestPath[to].distance);      printf("经过的顶点:  \n");      i=0;      while(1){          printf("%-3c\n",shortestPath[to].path[i]+'A');          if(shortestPath[to].path[i]==to)              break;          i++;      }      printf("\n");

(4)程序主函数调用:这里设定的是产生25个包裹。包裹1为{1,A,F},2为{2,A,G},3为{3,B,F},4为{4,D,G},5为{5,C,F};其他包裹都是从A到F。

void main()  {      int num=25;     int k=0;     Graph graph;      char from,to;      createdGraph(&graph);      //from为包裹起点城市,to为包裹终点城市;假设包裹1为{1,A,F},2为{2,A,G},3为{3,B,F},4为{4,D,G},5为{5,C,F}     while(kcount[i][j]=0;     g->count[0][4]=0;      g->count[0][2]=0;      g->count[1][2]=0;      g->count[1][3]=0;      g->count[1][4]=0;      g->count[1][5]=0;      g->count[2][5]=0;      g->count[2][6]=0;     g->count[3][4]=0;      g->count[3][5]=0;      g->count[5][6]=0;     g->count[2][0]=0;     g->count[2][1]=0;     g->count[3][1]=0;     g->count[4][0]=0;     g->count[4][1]=0;     g->count[4][3]=0;     g->count[5][1]=0;     g->count[5][2]=0;     g->count[5][3]=0;     g->count[6][2]=0;     g->count[6][5]=0;

(2)判断每条路已使用过的次数是否超过限流(运力上限),如果超过了,就把路距离设为INFINITE,表示此条路不再考虑:

for(i=0;ivertexNum;i++)          for(j=0;jvertexNum;j++)              if (g->count[i][j]>g->limit[i][j] || g->count[j][i]>g->limit[j][i]){             g->arc[i][j]=INFINITE;              g->arc[j][i]=INFINITE;             }

(3)计数。每次选择最短路径的路线的各个支路都要加上1:因为路线是双向的,需要双向都加上1。

i=0;      while(1){          //这条路被走过一次计数count就加上1         //printf("%d",shortestPath[to].path[i]+0);         printf("%-3c\n",shortestPath[to].path[i]+'A');          if(shortestPath[to].path[i]==to)              break;  //这条路被走过一次计数count就加上1         g->count[shortestPath[to].path[i]+0][shortestPath[to].path[i+1]+0]+=1;         g->count[shortestPath[to].path[i+1]+0][shortestPath[to].path[i]+0]+=1;         i++;      }

(4)优化算法结果:

程序运行结果图(运力上限优化)

由上图发现,在考虑运力上限后,算法符合题目要求。同样是从A运到F目的地,AC这条路运力上限为5,我们看到包裹11走的是ACF,但是包裹12走的是AEBF,因为AC已经达到了运力上限,不能再走,故更换路线!

同理在包裹17后,AE这条路也达到了运力上限,已经没办法从A到F了,因为AC和AE这两条路都达到了运力上限,故程序找不到路线,符合设定的要求!

源码链接:https://pan.baidu.com/s/1iKlJ3At9mXpVmv3N8RQX0Q

提取码:0aib

作者简介:李秋键,CSDN博客专家,CSDN达人课作者。硕士在读于中国矿业大学,开发有taptap竞赛获奖等。

更多精彩推荐 ☞30 周岁的 Python,“虐”我 20 年☞快过HugeCTR:用OneFlow轻松实现大型推荐系统引擎☞高手的习惯:pythonic风格代码☞对比四种爬虫定位元素方法,你更爱哪个? 点分享点收藏点点赞点在看


【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3