STM32

您所在的位置:网站首页 屏幕驱动芯片原理图 STM32

STM32

2024-07-09 09:44| 来源: 网络整理| 查看: 265

TFTLCD驱动原理 1. TFTLCD简介 2. TFTLCD原理图 3. TFTLCD接口描述 4. TFTLCD并口驱动简介 5. TFTLCD驱动流程 6. TFTLCD指令简介 1.TFTLCD简介

TFT-LCD 即薄膜晶体管液晶显示器。其英文全称为:Thin Film Transistor-Liquid Crystal Display。TFT-LCD 与无源 TN-LCD、STN-LCD 的简单矩阵不同,它在液晶显示屏的每一个象素上都设置有一个薄膜晶体管(TFT),可有效地克服非选通时的串扰,使显示液晶屏的静态特性与扫描线数无关,因此大大提高了图像质量。TFT-LCD 也被叫做真彩液晶显示器。

该模块有如下特点: 1,2.4’/2.8’/3.5’/4.3’/7’ 5 种大小的屏幕可选。 2,320×240 的分辨率(3.5’分辨率为:320480,4.3’和 7’分辨率为:800480)。 3,16 位真彩显示。 4,自带触摸屏,可以用来作为控制输入。

注意:模块是3.3v供电的,不支持5v的MCU,如果是5v的MCU,必须在信号串接120R的电阻使用。

2.TFTLCD原理图

我们以 2.8 寸的 ALIENTEK TFTLCD 模块为例介绍,该模块支持 65K 色显示,显示分辨率为 320×240,接口为16位的 80并口,自带触摸屏。 在这里插入图片描述 模块原理图 在这里插入图片描述

3.接口描述

在这里插入图片描述

2.8寸TFTLCD 16位80并口驱动简介

模块的8080并口读/写的过程为: 先根据要写入/读取的数据的类型,设置RS为高(数据)/低(命令),然后拉低片选,选中iL19341,接着我们根据是读数据,还是要写数据置RD/WR为低,然后: 1.读数据:在RD的上升沿,读取数据线上的数据(D[15:0]); 2.写数据:在WR的上升沿,使数据写入到ILI9341里面. 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

5.TFTLCD驱动流程

在这里插入图片描述

6.TFTLCD指令简介

在这里插入图片描述

读 ID4 指令

0XD3,这个是读 ID4 指令,用于读取 LCD 控制器的 ID,该指令如表所示: 在这里插入图片描述 0XD3 指令后面跟了 4 个参数,最后 2 个参数,读出来是 0X93 和 0X41,刚好是我们控制器 ILI9341 的数字部分,从而,通过该指令,即可判别所用的 LCD 驱动器是什么型号,这样,我们的代码,就可以根据控制器的型号去执行对应驱动 IC 的初始化代码,从而兼容不同驱动 IC 的屏,使得一个代码支持多款 LCD。

存储访问控制指令

0X36,这是存储访问控制指令,可以控制 ILI9341 存储器的读写方向,简单的说,就是在连续写 GRAM 的时候,可以控制 GRAM 指针的增长方向,从而控制显示方式(读 GRAM 也是一样)。该指令如表所示: 在这里插入图片描述 从上表可以看出,0X36 指令后面,紧跟一个参数,这里我们主要关注:MY、MX、MV这三个位,通过这三个位的设置,我们可以控制整个 ILI9341 的全部扫描方向,如表所示: 在这里插入图片描述 这样,我们在利用 ILI9341 显示内容的时候,就有很大灵活性了,比如显示 BMP 图片,BMP 解码数据,就是从图片的左下角开始,慢慢显示到右上角,如果设置 LCD 扫描方向为从左到右,从下到上,那么我们只需要设置一次坐标,然后就不停的往 LCD 填充颜色数据即可,这样可以大大提高显示速度。

列地址设置指令

0X2A,这是列地址设置指令,在从左到右,从上到下的扫描方式(默认)下面,该指令用于设置横坐标(x 坐标),该指令如表 所示: 在这里插入图片描述 在默认扫描方式时,该指令用于设置 x 坐标,该指令带有 4 个参数,实际上是 2 个坐标值:SC 和 EC,即列地址的起始值和结束值,SC 必须小于等于 EC,且 0≤SC/EC≤239。一般在设置 x 坐标的时候,我们只需要带 2 个参数即可,也就是设置 SC 即可,因为如果 EC 没有变化,我们只需要设置一次即可(在初始化 ILI9341 的时候设置),从而提高速度。

页地址设置指令

0X2B,是页地址设置指令,在从左到右,从上到下的扫描方式(默认)下面,该指令用于设置纵坐标(y 坐标)。该指令如表 所示: 在这里插入图片描述 在默认扫描方式时,该指令用于设置 y 坐标,该指令带有 4 个参数,实际上是 2 个坐标值:SP 和 EP,即页地址的起始值和结束值,SP 必须小于等于 EP,且 0≤SP/EP≤319。一般在设置y 坐标的时候,我们只需要带 2 个参数即可,也就是设置 SP 即可,因为如果 EP 没有变化,我们只需要设置一次即可(在初始化 ILI9341 的时候设置),从而提高速度。

写 GRAM 指令

0X2C,该指令是写 GRAM 指令,在发送该指令之后,我们便可以往 LCD的 GRAM 里面写入颜色数据了,该指令支持连续写,指令描述如表所示: 在这里插入图片描述 在收到指令 0X2C 之后,数据有效位宽变为 16 位,我们可以连续写入 LCDGRAM 值,而 GRAM 的地址将根据 MY/MX/MV 设置的扫描方向进行自增。例如:假设设置的是从左到右,从上到下的扫描方式,那么设置好起始坐标(通过 SC,SP 设置)后,每写入一个颜色值,GRAM 地址将会自动自增 1(SC++),如果碰到 EC,则回到 SC,同时 SP++,一直到坐标:EC,EP 结束,其间无需再次设置的坐标,从而大大提高写入速度。

读 GRAM 指令

0X2E,该指令是读 GRAM 指令,用于读取 ILI9341 的显存(GRAM),该指令在 ILI9341 的数据手册上面的描述是有误的,真实的输出情况如表所示: 在这里插入图片描述 该指令用于读取 GRAM,如表所示,ILI9341 在收到该指令后,第一次输出的是dummy 数据,也就是无效的数据,第二次开始,读取到的才是有效的 GRAM 数据(从坐标:SC,SP 开始),输出规律为:每个颜色分量占 8 个位,一次输出 2 个颜色分量。比如:第一次输出是 R1G1,随后的规律为:B1R2→G2B2→R3G3→B3R4→G4B4→R5G5… 以此类推。如果我们只需要读取一个点的颜色值,那么只需要接收到参数 3 即可,如果要连续读取(利用 GRAM地址自增,方法同上),那么就按照上述规律去接收颜色数据。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3