bert 对抗训练实现代码

您所在的位置:网站首页 如何训练对抗 bert 对抗训练实现代码

bert 对抗训练实现代码

2024-06-30 15:54| 来源: 网络整理| 查看: 265

目录

前言:

FGSM

PGD

FreeLB

Virtual Adversarial Training

效果

参考资料

前言:

对抗训练是魔改训练方式的一种,凡事对抗一下,说不定可以提高性能,建议都试一试,网上关于对抗训练的代码已经有很多啦,笔者这里简单汇总一些,供快速应用到自己的代码中,看效果,下面的代码包括FGSM,PGD.FreeLB,Virtual Adversarial Training。

说明:

(1)本篇不讲原理,重在实现,想看原理的,可以去找一些论文或博客,也可以参考文末给出的参考资料,下面的代码也基本都是摘录文末的参考资料,前三种对抗训练见参考资料的前3篇,后一种是一种基于对抗学习的半监督方式,见参考资料的后3篇

(2) 其实扰动应该是在整个emb输出的基础上进行,但是鉴于拆分模型比较麻烦,所以都是在emb矩阵上直接扰动,虽然这样扰动缺少多样性(即同一个位置token面临相同扰动),但是易于实现即:

对于CV任务来说,一般输入张量的shape是(b, h, w, c),这时候我们需要固定模型的batch size,即b,然后给原始输入加上一个shape同样为(b, h, w, c)、全零初始化的Variable,比如就叫做ΔxΔxΔx,那么我们可以直接求loss对x的梯度,然后根据梯度给ΔxΔxΔx赋值,来实现对输入的干扰,完成干扰之后再执行常规的梯度下降。 对于nlp任务来说,原则上也要对Embedding层的输出进行同样的操作,Embedding层的输出shape为(b, n, d),所以也要在Embedding层的输出加上一个shape为(b, n, d)的Variable,然后进行上述步骤,但需要拆解重构模型,对使用者不够友好。 退而求其次。Embedding层的输出是直接取自于Embedding参数矩阵的,因此我们可以直接对Embedding参数矩阵进行扰动。这样得到的对抗样本的多样性会少一些(因为不同样本的同一个token共用了相同的扰动)。但仍能起到正则化的作用,实现起来容易得多。

上述话:来源于bert4keras快速使用以及对抗训练 - 灰信网(软件开发博客聚合)

(3)不论哪种对抗基本都要求知道自己模型中的embedding的参数名,现在用的最多的就是bert,笔者这里打印了一下pytorch-transformers的bert-base-chinese模型层名:

可以看到整个emb应该是word_embeddings+position_embeddings+token_type_embeddings,但是为了便于实现是对word_embeddings矩阵直接扰动的,如果用 bert的话,下面代码中涉及到的"自己模型embedding的参数名"即emb_name可是使用"word_embeddings",注意不要写成embeddings.了,这样的话就是对position_embeddings+token_type_embeddings有影响了,当然可以试一试。

FGSM

这是最开始的对抗思路

class FGM(object): def __init__(self, model, emb_name, epsilon=1.0): # emb_name这个参数要换成你模型中embedding的参数名 self.model = model self.epsilon = epsilon self.emb_name = emb_name self.backup = {} def attack(self): for name, param in self.model.named_parameters(): if param.requires_grad and self.emb_name in name: self.backup[name] = param.data.clone() norm = torch.norm(param.grad) if norm != 0 and not torch.isnan(norm): r_at = self.epsilon * param.grad / norm param.data.add_(r_at) def restore(self): for name, param in self.model.named_parameters(): if param.requires_grad and self.emb_name in name: assert name in self.backup param.data = self.backup[name] self.backup = {}

训练

fgm = FGM(model,epsilon=1,emb_name='word_embeddings.') for batch_input, batch_label in processor: # 正常训练 loss = model(batch_input, batch_label) loss.backward() # 反向传播,得到正常的grad # 对抗训练 fgm.attack() # 在embedding上添加对抗扰动 loss_adv = model(batch_input, batch_label) loss_adv.backward() # 反向传播,并在正常的grad基础上,累加对抗训练的梯度 fgm.restore() # 恢复embedding参数 # 梯度下降,更新参数 optimizer.step() model.zero_grad() PGD

相当于多步FGSM

class PGD(object): def __init__(self, model, emb_name, epsilon=1., alpha=0.3): # emb_name这个参数要换成你模型中embedding的参数名 self.model = model self.emb_name = emb_name self.epsilon = epsilon self.alpha = alpha self.emb_backup = {} self.grad_backup = {} def attack(self, is_first_attack=False): for name, param in self.model.named_parameters(): if param.requires_grad and self.emb_name in name: if is_first_attack: self.emb_backup[name] = param.data.clone() norm = torch.norm(param.grad) if norm != 0: r_at = self.alpha * param.grad / norm param.data.add_(r_at) param.data = self.project(name, param.data, self.epsilon) def restore(self): for name, param in self.model.named_parameters(): if param.requires_grad and self.emb_name in name: assert name in self.emb_backup param.data = self.emb_backup[name] self.emb_backup = {} def project(self, param_name, param_data, epsilon): r = param_data - self.emb_backup[param_name] if torch.norm(r) > epsilon: r = epsilon * r / torch.norm(r) return self.emb_backup[param_name] + r def backup_grad(self): for name, param in self.model.named_parameters(): if param.requires_grad and param.grad is not None: self.grad_backup[name] = param.grad.clone() def restore_grad(self): for name, param in self.model.named_parameters(): if param.requires_grad and param.grad is not None: param.grad = self.grad_backup[name]

训练

pgd = PGD(model,emb_name='word_embeddings.',epsilon=1.0,alpha=0.3) K = 3 for batch_input, batch_label in processor: # 正常训练 loss = model(batch_input, batch_label) loss.backward() # 反向传播,得到正常的grad pgd.backup_grad() # 对抗训练 for t in range(K): pgd.attack(is_first_attack=(t==0)) # 在embedding上添加对抗扰动, first attack时备份param.processor if t != K-1: model.zero_grad() else: pgd.restore_grad() loss_adv = model(batch_input, batch_label) loss_adv.backward() # 反向传播,并在正常的grad基础上,累加对抗训练的梯度 pgd.restore() # 恢复embedding参数 # 梯度下降,更新参数 optimizer.step() model.zero_grad() FreeLB class FreeLB(object): def __init__(self, adv_K, adv_lr, adv_init_mag, adv_max_norm=0., adv_norm_type='l2', base_model='bert'): self.adv_K = adv_K self.adv_lr = adv_lr self.adv_max_norm = adv_max_norm self.adv_init_mag = adv_init_mag self.adv_norm_type = adv_norm_type self.base_model = base_model def attack(self, model, inputs, gradient_accumulation_steps=1): input_ids = inputs['input_ids'] if isinstance(model, torch.nn.DataParallel): embeds_init = getattr(model.module, self.base_model).embeddings.word_embeddings(input_ids) else: embeds_init = getattr(model, self.base_model).embeddings.word_embeddings(input_ids) if self.adv_init_mag > 0: input_mask = inputs['attention_mask'].to(embeds_init) input_lengths = torch.sum(input_mask, 1) if self.adv_norm_type == "l2": delta = torch.zeros_like(embeds_init).uniform_(-1, 1) * input_mask.unsqueeze(2) dims = input_lengths * embeds_init.size(-1) mag = self.adv_init_mag / torch.sqrt(dims) delta = (delta * mag.view(-1, 1, 1)).detach() elif self.adv_norm_type == "linf": delta = torch.zeros_like(embeds_init).uniform_(-self.adv_init_mag, self.adv_init_mag) delta = delta * input_mask.unsqueeze(2) else: delta = torch.zeros_like(embeds_init) for astep in range(self.adv_K): delta.requires_grad_() inputs['inputs_embeds'] = delta + embeds_init inputs['input_ids'] = None outputs = model(**inputs) loss, logits = outputs[:2] # model outputs are always tuple in transformers (see doc) loss = loss.mean() # mean() to average on multi-gpu parallel training loss = loss / gradient_accumulation_steps loss.backward() delta_grad = delta.grad.clone().detach() if self.adv_norm_type == "l2": denorm = torch.norm(delta_grad.view(delta_grad.size(0), -1), dim=1).view(-1, 1, 1) denorm = torch.clamp(denorm, min=1e-8) delta = (delta + self.adv_lr * delta_grad / denorm).detach() if self.adv_max_norm > 0: delta_norm = torch.norm(delta.view(delta.size(0), -1).float(), p=2, dim=1).detach() exceed_mask = (delta_norm > self.adv_max_norm).to(embeds_init) reweights = (self.adv_max_norm / delta_norm * exceed_mask + (1 - exceed_mask)).view(-1, 1, 1) delta = (delta * reweights).detach() elif self.adv_norm_type == "linf": denorm = torch.norm(delta_grad.view(delta_grad.size(0), -1), dim=1, p=float("inf")).view(-1, 1, 1) denorm = torch.clamp(denorm, min=1e-8) delta = (delta + self.adv_lr * delta_grad / denorm).detach() if self.adv_max_norm > 0: delta = torch.clamp(delta, -self.adv_max_norm, self.adv_max_norm).detach() else: raise ValueError("Norm type {} not specified.".format(self.adv_norm_type)) if isinstance(model, torch.nn.DataParallel): embeds_init = getattr(model.module, self.base_model).embeddings.word_embeddings(input_ids) else: embeds_init = getattr(model, self.base_model).embeddings.word_embeddings(input_ids) return loss

训练

freelb = FreeLB() K = 3 for batch_input, batch_label in processor: loss = freelb.attack(model,inputs,.....)

说明

(1)关于这里的训练可能看着有点疑惑,还是不知道具体怎么写,可以直接看:

图片来源:https://github.com/lonePatient/TorchBlocks/blob/e6c5959e6a3d3380bbb147f1c30f752cd8482c1a/examples/task_text_classification_freelb_cola.py#L43

55行的就是一个字典,更多详细情况看代码就知道是怎么回事了。

(2)dropout=0的问题

图片来源见参考资料。

关于dropout要不要为0,笔者建议都试一试,取其好。

Virtual Adversarial Training

这是一种基于对抗学习的半监督训练方式,如果你的标签数据较少,且还有很多未标签数据,可以试一试该方法对结果有没有效果,具体原理见参考资料

待更新

效果

总体上对抗学习还是能带来一些收益的

温馨小提示:这里的cls_cat是cls和token pooling的concat,cls_mean是两者的mean ,效果要比单一用cls或者token pooling的结果都好。

参考资料

FGSM,PGD.FreeLB代码:TorchBlocks/adversarial.py at e6c5959e6a3d3380bbb147f1c30f752cd8482c1a · lonePatient/TorchBlocks · GitHub

NLP中的对抗训练 + PyTorch实现:【炼丹技巧】功守道:NLP中的对抗训练 + PyTorch实现 - 知乎

对抗训练的理解,以及FGM、PGD和FreeLB的详细介绍:对抗训练的理解,以及FGM、PGD和FreeLB的详细介绍_甘如荠-CSDN博客_fgm对抗训练

Virtual Adversarial Training解读:Virtual Adversarial Training解读_qq_33221657的博客-CSDN博客

Virtual Adversarial Training loss参考代码:Virtual Adversarial Training的pytorch实现_机器学习 数据挖掘 搜索引擎 推荐系统-CSDN博客

Virtual Adversarial Training整个实现参考代码:ssl_text_classification/training.py at 1b92c8df59230f259a7b8a6d50b830d17e081362 · DevSinghSachan/ssl_text_classification · GitHub

笔者微信公众号,定期分享一些trick:

​​​​​​​

 



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3