安思疆深度解密苹果dToF激光雷达技术

您所在的位置:网站首页 大揭秘李安 安思疆深度解密苹果dToF激光雷达技术

安思疆深度解密苹果dToF激光雷达技术

2024-07-12 02:24| 来源: 网络整理| 查看: 265

图2. 3D Lidar核心器件组成及工作原理示意图

图3. 苹果 3D Lidar 电路板实物图

如图2和图3,苹果3D Lidar的核心部件为VCSEL+ Collimator +DOE(组成发射端)、Imaging Lens +Narrow-band Filter +SPAD (组成接收端)、高速高功率激光驱动电路。我们先对各个核心器件做一个基本了解。

核心器件篇

CORE COMPONENTS

VCSEL

Collimator

DOE

Imaging Lens

Narrow-band Filter

SPAD

高速高功率激光驱动电路

VCSEL垂直腔面发射激光器

Vertical-Cavity Surface-Emitting Laser

激光是爱因斯坦在研究粒子的受激辐射时演变而来的技术,是使光波在含有增益介质的光学腔(谐振腔)里产生稳定的驻波震荡,以此实现光能量放大。第1台激光器由美国科学家在1960年利用红宝石制成,激光的中文名是由钱学森先生翻译的。我们可以按光束出射的方式,将激光分为2种类型,即EEL(Edge-Emitting Laser 边发射激光)和VCSEL(Vertical-Cavity Surface-Emitting Laser 垂直腔面发射激光),如图4。

制作激光器的材料可以是固体、气体、染料和半导体。目前用于消费电子和汽车电子等领域的主要是半导体激光器和光纤激光器(属于固体激光器),也开始在车载有应用,不过本文讨论的是半导体激光器范畴。

那么,EEL和VCSEL的区别是什么?顾名思义,EEL的光束是从器件的侧边发射出来,由于激光芯片可以在水平方向做得比较长,因此激光可以获得充分的能量增益,功率可以做得很大,目前绝大部分激光器都是EEL。VCSEL则是垂直于激光芯片表面(即厚度方向)发光。

图4. 左:边发射激光,光从芯片侧边发出;中:VCSEL,光从芯片表面发出;右:LED,光从各个方向发出.

众所周知,芯片的厚度一般都非常薄,因此激光获得的能量增益有限,VCSEL中的增益腔长一般只有纳米、微米量级,跟EEL差几个数量级,因此VCSEL的功率很难做大。不过,可以实现级联放大的多结VCSEL也已经开始成熟应用,但目前还与EEL有较大差距。VCSEL是在1979年,也就是激光发明近20年后,才由日本科学家发明,其难点之一就是增益腔太短,导致损耗大于增益,很难稳定发光;经过不断的改善,直到上世纪90年代才开始在通信领域上逐渐应用。虽然存在这些缺点,但是VCSEL同样有EEL无法比拟的几大优势:

1

多点阵&紧凑封装

VCSEL可以很轻松做到将几十甚至上千个激光发射单元集成在小于数平方毫米的面积上,相邻的两个激光器单元之间的间隔甚至可短至~10um,这是EEL几乎不可能做到的,因此也非常便于封装集成,可以完全复用目前摄像头的COB(Chip on Board)工艺,对比之下EEL的封装则稍显笨拙。

2

图案化&分区照明

VCSEL还可以将众多激光点源按特殊设计排布,形成任意的图案,例如iPhone前置3D结构光中使用的伪随机散斑编码VCSEL,如果 同时采用特殊的制程,可以将这些激光点阵按组别进行物理隔离,分时、分区点亮,进而可以进行更精细更复杂的设计,提升系统性能,这也是EEL无法独立实现的。

3

规模化量产&成本

由于是垂直晶圆表面发光,VCSEL在工艺制程上有巨大的优势,在晶圆制作完成之后,可以直接利用探针技术进行在线的晶圆级测试。而EEL则不行,因为边发射的激光一般需要在谐振腔的两侧,也即晶圆的水平方向进行解理镀反射膜,才能形成激光谐振腔,因此切割后还要继续进行加工和测试,这就大大降低了生产效率,增加很多成本。对于工业、车载等领域,尚可接受,但对于手机等量级的消费电子领域显然是无法接受的。

4

发散角圆对称

由于VCSEL束缚电流的孔径形状一般是圆形或接近圆形,所以其发散角在各个方向都相等,是圆对称的,因此光斑也是圆形,有利于后续光学整形系统的设计。EEL的孔径一般是横纵比较大的矩形,所以EEL的发散角是椭圆状,而且水平和垂直的发散角相差比较大,光斑是一个比较扁的椭圆形,这对后续的光束整形是比较不友好的。

综上,在消费电子领域,对激光功率、光束质量以及可靠性等要求相对较低,这就在很大程度上屏蔽了VCSEL的弱点,而其优势则完全发挥。因此,消费电子过去、现在和未来的趋势也必然是以VCSEL这种垂直表面发光形式的器件为主,这也是为什么苹果对此进行了大规模的投资。未来HCSEL水平腔表面发射激光(Horizontal V-Cavity Surface-Emitting Laser)也将逐步应用起来,这是一种结合了EEL和VCSEL优点的激光器,在此不展开详述。总之,在消费电子领域采用表面发射形式的激光拥有巨大优势。

准直镜头&接收镜头

Collimator & Imaging Lens

这两个器件是成像光学镜头,属于比较传统的几何光学领域,只不过前者用于投影,后者用于摄影。

Collimator,业界一般称为准直镜头,在苹果的结构光和dToF Lidar上都有应用,但其实除苹果之外,一般的ToF技术都不使用准直镜,原因在后面会讲到。准直镜头由多个光学镜片组合而成,用来将激光光源投射到场景中。本质上作用有二,其一是将激光的发散角整形至接近0度,其二是将仅约1mm2、由多个激光点阵形成的微小图案投射出去并放大,放大倍率通常在数百倍至数千倍。这也是为什么1mm2大小的VCSEL所投射出来的点阵却能最终覆盖前方大视场范围场景的原因之一,原因之二则是后面要讲的DOE所起的作用。

Imaging Lens,业界一般称为接收镜头,是所有2D、3D视觉中必不可少的器件,包括单反相机、手机相机、安防监控、工业检测、机器视觉等。在dToF Lidar的系统应用中,与Collimator一样,一般也是由多个光学镜片组成,其作用是成像接收TX端所投射出来的放大散斑,并在焦面上重新缩小至数平方毫米,以便微小尺寸的光电传感器接收。

评价光学成像镜头的性能指标叫像差,包含了畸变、色差、场曲、球差以及比较综合的评价参数MTF等。像差的意思是成像的差别,也即实际的成像与完美成像的差别,因此通常用于摄影的光学镜头肯定是要求各种像差,例如畸变,越小越好,越接近于0越好;但是,苹果却反其道而行之,故意把Imaging Lens的畸变设计得特别大,这非常独特,几乎没有先例,这一点我们将在后面系统篇中进行解析。

DOE 衍射光学元件

Diffraction Optical Element

DOE衍射光学元件,属于物理光学范畴,我们都知道光具有波粒二象性,光电效应证明其粒子的特性,光的衍射现象则证明了其波动的特性,其实二者本质上也是自洽的。一般来讲,在几何成像光学领域用的是光线光学的理论,即偏粒子性,而在光的衍射干涉等领域则采用波动光学理论,即偏波动性。实际上,波动光学的理论可以完全适用于几何成像光学,只是这样会让问题解析变得更繁琐复杂,所以才不这样用。那么,我们通常所说的几何光学、衍射光学以及最近比较热门的超表面光学(Meta Surface)的区别是什么呢?

让我们来做一个更本质的区分,假设光波的波长为λ(可见光波长为380nm~760nm),器件的特征尺寸(feature size 可以理解为最小结构)为d, 一般来讲可以这样分 d几何光学,虽然复杂程度不一样,但综合难度是差不多的,无论哪个领域想要精通都必须付出同样的努力。

回到DOE,经过上述的了解,我们对DOE有了基本认识。DOE在苹果的3D结构光和3D Lidar中都有使用,其功能是比较容易理解的,本质上是把一束光分裂成若干份,再通俗一点讲就是把一束光复制多份,起到复制的作用。因此DOE可以把上述Collimator放大的散斑图案进行复制,相当于对散斑的投射范围进行了二次放大,苹果的3D结构光视野范围~90°,因此即使被摄人脸的位置偏离较大时也能同样解锁。苹果的3D Lidar视野范围也达到了~70°。角度越大,系统设计和DOE设计难度都急剧增大,不过目前已经有超过100°的超广角3D结构光产品,例如安思疆的Nuwa系列产品已经可以达到110°。

窄带滤光片

Narrow-band Filter

该器件属于薄膜光学领域,是比较传统的领域。3D Lidar中使用的是940nm近红外VCSEL激光器,窄带滤光片的作用是滤除掉940nm之外的环境光,最大程度减少干扰,大大提高信噪比,但因为制造工艺的原因会比普通的截止滤光片贵不少。这一器件相对常见就不再展开讨论。

SPAD 单光子雪崩二极管

Single Photon Avalanche Diode

前述的VCSEL属于光源器件,是将电能转化为光能;光学镜头、DOE和滤光片则属于无源被动器件,即不用消耗电能;现在要讲的SPAD芯片则是将光能转化为电能,并且还能通过模拟-数字转换,将探测到的光信号最终转换成数字形式向外输出,是一颗集成了光电探测模块、模拟电路模块、数字电路模块的高度集成化的芯片,是相对比较新兴的领域,而且苹果还把它做成了大面阵的阵列,这也是阵列SPAD第一次在消费电子领域应用。乘着苹果的东风,第一次出场就是上亿数量级的超大规模量产,这与几年前VCSEL和DOE的消费级大规模应用几乎如出一辙,苹果也将SPAD sensor订单交与了最亲密的合作伙伴——日本索尼公司。

采用定制化工艺制造的固态SPAD尽管已经发明了几十年,但是之前一直存在两个问题: 一是器件体积大,价格昂贵; 二是器件与集成电路难以兼容。近几年来,基于CMOS工艺的SPAD阵列的成功设计和制造很好地解决了这两方面的问题,从远红外到深紫外频段SPAD都能实现单光子级别的探测灵敏度,与光电倍增管、APD等相比较,其具有更高的量子效率、更小的尺寸、更低的击穿电压,能识别单光子,可数字化成像,抗环境光干扰等特点,其最大的优势在于能够实现远距离测距,且具备较高精准度,因此在激光雷达、核医学设备、生物诊断、高能物理、射线探测、分析仪器等多个领域已有广泛应用。

图6. SPAD工作原理

如图6所示,SPAD是一种基于内光电效应的光电探测器件,当在PN结两端施加足够的反向偏置电压时,光子被中性层吸收后将所携带的能量传递给价带上的电子使其跃迁至导带,从而产生光生载流子,在内部电势的作用下向雪崩倍增区漂移,当雪崩倍增区的内建电场大于碰撞电离所需的最小电场强度时,光生载流子获得更高的能量后被加速,与雪崩倍增区的晶格原子发生多次碰撞产生更多的电子-空穴对。这种雪崩倍增效应使器件内部的电子-空穴对呈现指数倍的增长,从而产生极高的光生电流。

图7. 典型的SPAD sensor架构

图7展示了典型的SPAD sensor架构,可以看出是这是一种非常综合型的芯片,包含SPAD光电二极管、模拟电路、模数混合电路、数字电路等。

图8. 左右分别为典型的共阴极(Common Cathode)FSI和共阳极(Common Anode)BSI像素结构

如图8,与传统图像传感器类似,从制造工艺来分,SPAD sensor可以分为FSI(前照式)和BSI(背照式)两种类型。这两种结构在制造上的差异要远大于传统图像传感器,原因就在于每个像素都需要与TDC相连接,导致采用BSI的工艺会大大增加复杂度。

图9. 苹果采用BSI工艺的SPAD sensor实物图和像素剖面图

如图9,苹果采用的是BSI工艺,将SPAD层与逻辑电路层通过一种先进的低温铜-铜键合工艺连接起来,这样可以把逻辑电路完全掩藏在底部,从而使SPAD的受光面积达到接近100%,最大限度的提升感光效率,苹果在其专利中对此进行了详述。

高速高功率激光驱动电路

High Speed & High Power Laser Driver Circuit

图10. iPhone激光雷达的驱动芯片和光脉冲,每秒发射约2400万个光脉冲

dToF的测量原理中要用到超短脉冲激光,因此也对激光的驱动电路提出了要求: 1.脉冲宽度~1ns;2.瞬时电流在某些应用中最高要达到~20A。单看脉冲宽度,这不能算是很高的要求,但是要同时满足大电流就变得非常困难,由于大部分驱动芯片还是硅基形式,无法承载这么大的高速电流,因此不仅在消费电子领域几乎没有过类似的需求,即使在车载领域也很难找到一颗集成的驱动芯片来同时满足这两个要求。目前主要的解决方式是:短脉冲驱动芯片+GaN开关,未来将这二者集成在一起是趋势。无论如何,为了产生超短+高功率的激光脉冲,并且保持脉冲不变形,对激光器以及其驱动电路都提出了极高的要求。

系统篇

SYSTEM

前面我们对苹果Lidar中使用的各种器件做了逐一介绍,从中我们可以看到这些器件之间几乎没有相通之处,每一个器件都是一个独立的领域,集结了几何光学、衍射光学、光电子学、激光、半导体物理、模拟电路、数字电路等领域最前沿的技术,而且对于最终的产品系统来讲,这还只包含了一半的东西,剩下一半是算法软件。3D视觉和2D视觉的一大区别就是3D视觉的软硬件具有非常强的耦合性,这会在下面讲到。

如此多前沿学科的交叉必然使得系统设计异常复杂,但是学科交叉又是最容易产生创新的地方,那么这么多的交叉会产生怎样的效果呢?接下来我们一起看看苹果到底是如何设计这套Lidar系统,根据公开专利显示在2014年左右,也就是苹果花了将近4亿美金收购PrimeSense(3D结构光公司)之后,就开始同步研究这一技术了。

我们首先从应用场景出发对产品规格提出需求,主要针对手机和Pad用户。因为是在后置模块,需要做3D建模、SLAM、AR渲染等应用,所以距离不能太近,但人是习惯于握着设备移动扫描的,使用距离肯定也不用像车载那么远,那么5米就是一个适中的范围;对于分辨率和视场角,Lidar的应用不需要像结构光一样多达数百万的分辨率,也不需要用来做Face ID等高精度应用,而是用于平面检测、空间定位、物体测量、虚拟场景和现实场景的1:1融合等等;结合对后续算法的综合平衡,起码要达到HQVGA分辨率,而视场角则与后置主摄像头匹配,可以略小一点;对于体积尺寸,毫无疑问,手机上最大的限制就是空间,可谓寸土寸金,而Lidar包含接收和发射两个模块,如何能够做得比一个普通的摄像头更小,而且还要小很多,这是极具挑战的,但这也是必须要满足的;对于功耗,Lidar使用起来时会持续工作,因此必须在300mw~500mw范围上下不能太大;对于使用环境,必须适用室内、室外、强光和弱光,全场景下都有同样的性能,这样才能让普通用户感受不到差别,但这其实是很困难的一项要求,一般来说在其他应用领域可以做取舍但对于手机用户而言是断然不行的;对于成本,当然是越低越好,考虑到是革命性产品,可以接受一定的溢价,从拆解情况来估算,苹果的Lidar物料成本大概在$10~$12之间,是完全可接受的。归纳如下:

需要注意是,以上需求必须同时满足。

图11. dToF测量原理

在设计解决方案之前,我们先了解一下系统工作的基本逻辑和原理。典型的dToF系统的测量原理是:以单次测量周期为例,如图11,SPAD芯片内部的控制电路会发出“开始”信号,这一信号一方面会让内部的TDC计时器开始计时,另一方面会传送出去给到外部的激光驱动芯片作为同步触发信号,驱动芯片接收到触发信号后,会产生一个~1ns的超窄脉冲电流,触发脉冲信号和输出脉冲电流之间由于经过了Driver IC会有时延,这种时延一般是ns级,所以一般在其他的应用中都不太需要考虑,但在dToF测量系统中是不行的,这一时延需要在模组生产的过程中进行测量并且补偿,而且它还与温度相关,这会使得精准补偿的难度增加,在此不展开讨论。VCSEL接收到电流脉冲之后开始发光(这里也会有时延产生,需要补偿),光束由准直镜放大准直后投射到DOE上,DOE经过复制扩散形成更大的投射范围,再经过场景中的物体反射回接收镜头,经过接收镜头的缩小成像后照射在SPAD阵列上, 雪崩二极管接收到光脉冲后会产生雪崩电流,致使TDC的计时中断,从而得到一次飞行时间t1,同时淬灭复位电路会将测量电路快速复位,等待下一个测量周期的光脉冲到来,这样经过多次重复该过程就算是一次完整的测量。假设测量N次,其中n次有效(n



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3