声光效应实验报告 华科大近代物理实验

您所在的位置:网站首页 塞曼效应实验总结 声光效应实验报告 华科大近代物理实验

声光效应实验报告 华科大近代物理实验

2024-07-13 16:12| 来源: 网络整理| 查看: 265

声光效应实验报告November 19 2011

当超声波在介质中传播时,将引起介质的弹性应变作时间上和空间上的周期性的变化,并且导致介质的折射率也发生相应的变化。当光束通过有超声波的介质后就会产生衍射现象,这就是声光效应

声光效应实验报告

一、实验目的

1.了解声光效应的原理。

2.了解喇曼—纳斯衍射和布喇格衍射的实验条件和特点。

3.通过对声光器件衍射效率,中心频率和带宽等的测量,加深对其概念的理解。

4.测量声光偏转和声光调制曲线。

二、实验原理

当超声波在介质中传播时,将引起介质的弹性应变作时间上和空间上的周期性的变化,并且导致介质的折射率也发生相应的变化。当

光束通过有超声波的介质后就会产生衍射现象,这就是声光效应。有超声波传播着的介质如同一个相位光栅。

设声光介质中的超声行波是沿у方向传播的平面纵波,其角频率为w s,波长为λs,波矢为k s。入射光为沿х方向传播的平面波,其角

图 1 声光衍

频率为w ,在介质中的波长为λ,波矢为k 。介质内的弹性应变也以行波形式随声波一起传播。由于光速大约是声波的105倍,在光波通过的时间内介质在空间上的周期变化可看成是固定的。

当超声波在各向同性的介质中传播时,微小应变引起的折射率的变化为

301

2

n n PS ?=-

设光束垂直入射通过厚度为L 的介质,则前后两点的相位差为

()()00,sin s s k n y t L t k y ΦΦδΦω?==?+-

当光束斜入射时,如果声光作用的距离满足L <λ

S

2 /2λ,则各级衍射极大的方位角θm 由下

式决定。布喇格角满足

称为布喇格条件。因为布喇格角一般都很小,故衍射光相对于入射光的偏转角φ为

式中,νS 为超声波波速,f S 为超声波频率

2B s

s s i f nv λλλΦ=≈

=

在布喇格衍射的情况下,一级衍射光的衍射效率为

三、实验仪器

声光器件,功率信号源,CCD光强分布测量仪,USB100计算机

数据采集盒,模拟通信收发器,光电池盒,半导体激光器,光

具座,示波器和频率计等

四、实验步骤

1.观察喇曼-纳斯衍射和布喇格衍射,比较两种衍射的实验条件和

特点

2.调出布喇格衍射,用示波器测量衍射角,先要解决“定标”的

问题,即示波器X方向上的1格等于CCD器件上多少象元,或

者示波器上1格等于CCD器件位置X方向上的多少距离

3.布喇格衍射下测量衍射光相对于入射光的偏转角φ与超声波

频率(即电信号频率)fs的关系。测出6—8组(φ,f s)值,在课堂上用计算器作直线拟合求出φ和f s的相关系数。课后

作φ和f s的关系曲线

4.布喇格衍射下,固定超声波功率,测量衍射光相对于零级衍射

光的相对强度与超声波频率的关系曲线,并定出声光器件的带

宽和中心频率。

5.(选做)布喇格衍射下,将功率信号源的超声波频率固定在声

光器件的中心频率上,测出衍射光强度与超声波功率,并作出

其声光调制关系曲线

五、数据记录与处理

CCD的长度是28.67mm,在示波器上X轴显示的是16.80个格子

介质与CCD的距离约为26cm,激光的频率为650nm

λ=

1、求声光介质中行波频率s f与1级衍射光偏转角?的关系

根据公式

CCD

arctan

CCD CCD

?

?

=

?

波峰在示波器的距离实际宽度

在示波器上的距离介质与的距离

可以

出偏转角?角的大小

先大致判断声光介质中行波频率s f 与1级衍射光偏转角?的关系是线性正相关的,因此用最小二乘法进行线性拟合。假设两者有

f a b ?=+的关系。

列出误差方程

)i i i v f a b ?=-+(

为计算方便将数据列表如下

a .下面求线性回归方程

按矩阵计算有

7

1

7

7

21

17

0.11620.11620.001971i

i i i i i n C ???===??

??

????==????????

??

∑∑∑ 1 6.629390.8390.823540C --??

=??

-??

711

71 5.3325482i i i i i f a C b f ?=-=??

????????==???????????

???∑∑ 5.3325482

a b =??

=? 因此衍射光的频率随偏转角变化的规律为

5482 5.332s f ?=+

相关系数0.989r = b .下面进行精度估计

先对测量的数据进行精度估计 把残差的值列出来

由误差理论可知

σ=

=

下面对估计量进行精度估计 由上面的正规方程,列出不定乘数11

12

21

22

d d d d ??

?的方程组 11121112

212221227+0.1162=1

0.1162+0.00197107+0.1162=00.1162+0.0019711

d d d d d d d d ??=??

??=? 解得1122 6.691

23764

d d =??

=?

5.9

360

a b σσ?==≈?∴?

==≈?? 因此a 的标准不确定度为5.9,因此a 为5.3 5.9±()

b 的标准不确定度为360,因此b 为35.480.3610±?()

3+a

(5.480.36105.3 5.9s f b b a ?∴=?=±??

=±?)其中()

(注:其中的单位为MHz ) 根据原理可得

60

-9

6330

11065010

=

10 5.4810m/s=1.4910m/s

2.386

s s b nv v b n

λλ=???=

????

根据误差传递函数可得30

0.0910/s v b m s n

λ?=

?=?

所以超声波在介质中传播速度为3(1.490.09)10/s v m s =±?

s f

表中的强度用示波器中Y值的大小表示的

由1级与0级衍射光的相对强度与超声波频率的关系曲线可确定中心频率为089.75f MHz =,带宽为2(99.2389.75)18.96s f MHz ?=-=

3、在实验过程中测量的中心频率为87.169MHz ,因此在实验中将超声波频率调至87.169MHz ,测量的1级衍射光的强度与超声波的功率的数据

描点画图

由曲线可知,1级衍射光的强度与超声波的功率也大致成线性关系关系曲线为10.4 2.5

=-

y x

旁观者效应实验

实验地点: 繁华的街口 实验人数: 三人以下简称A.B.C 实验过程: (1)A乔装成路人,走在街口的时候假装突然发病,慢慢坐在地上,然后呼救。 (2)此时C在一隐蔽处,用DV机记录在A假装发病倒地过程中及接下来一段时间里,路人对A发生这一情况所做出的反应。 (3)一段时间过后,B乔装成路人,在走过A时,上前询问A的情况,并进行救助。(4)C在一旁用DV机记录在B做出上前询问及救助后,路人又是怎样的反应。 实验现象: 现象一:在A乔装成路人并在街口发病后,过往的众多路人并未上前进行救助或是拨打110,120等急救电话,期间有路人驻足观看,回头张望,抑或视而不见。 现象二:在B上前询问进行救助的行为发生后,有一个路人也走上前询问,接着跟多的路人上前围观和帮助。 实验结论: 现象一和现象二可以分别称为责任分散效应和从众效应。 责任分散效应也称为旁观者效应,是指对某一件事来说,如果是单个个体被要求单独完成任务,责任感就会很强,会作出积极的反应。但如果是要求一个群体共同完成任务,群体中的每个个体的责任感就会很弱,面对困难或遇到责任往往会退缩。因为前者独立承担责任,后者期望别人多承担点儿责任。“责任分散”的实质就是人多不负责,责任不落实。 正是由于在紧急状态下有其他目击者在场,才使旁观者无动于衷。旁观者效应,他们解释道,不是在于旁观者的“病态”人格,而是在于旁观者对其他观察者的反应。旁观者数量越大,旁观者效应越明显。总体来说,当紧急情形出现时,如果只有一人在场,约有半数的人会伸手相救;如果知道还有另外一个人在场,援助者只有33%;如果知道还有更多的人在场,援助者只有22%。 人们常常要以别人为参照物来定位自己,通过观察别人来判断自己是否正确,所以这就导致了多人在场时反应会变慢。同时每个人都以为别人会做,自己就不做了,或者抱着罚不责众的心态,所以也就没有人会上前帮助或报警了。 从众效应作为一个心理学概念,是指个体在真实的或臆想的群体压力下,在认知上或行动上以多数人或权威人物的行为为准则,进而在行为上努力与之趋向一致的现象。从众效应既包括思想上的从众,又包括行为上的从众。从众是一种普遍的社会心理现象,从众效应本身并无好坏之分,其作用取决于在什么问题及场合上产生从众行为,具体表现在两个方面:一是具有积极作用的从众正效应; 二是具有消极作用的从众负效应。 积极的从众效应可以互相激励情绪,做出勇敢之举,有利于建立良好的社会氛围并使个体达到心理平衡,反之亦然。 正是由于B的救助行为给旁人的引导,所以更多的人上前救助。

近 代 物 理 实 验 报 告 -高温超导

近代物理实验报告 实验题目:高温超导材料的特性与表征作者:李健 时间:2015-09-17

高温超导材料的特性与表征 【摘要】本实验主要通过对高温超导材料Y-Ba-Cu-O特性的测量,理解超导体的两个基本特性,即完全导电性和完全抗磁性,了解超导磁悬浮的原理。本实验利用液氮将高温超导材料Y-Ba-Cu-O降温,用铂电阻温度计测量温度,通过测量铂电阻的大小及查询铂电阻-温度对照表得出相应的温度,再电压表测得超导体电阻,即能得到超导体电阻温度曲线,测得该样品的超导转变温度约为93K;再通过超导磁悬浮实验验证了高温超导材料的磁特性,得到分别在零场冷却,有场冷却下的超导体的磁悬浮力与超导磁体间距的关系曲线。 【关键词】高温超导零电阻现象MEISSNER效应低温恒温器四引线法磁悬浮 【引言】 从1991年荷兰物理学家卡默林·翁纳斯(H.K.Onnes)发现低温超导体,超导科技发展大体经历了三个阶段:1911年到1957年BCS超导微观理论问世,是人类对超导电性的基本探索和认识阶段,核心是提出库珀电子对;第二阶段是从1958年到1985年是超导技术应用的准备阶段,成功研制强磁场超导材料,发现约瑟夫森效应;第三阶段是1986年发现高于30K的超导材料,进入超导技术开发时代。超导研究领域的系列最新进展,为超导技术在更方面的应用开辟了十分广阔的前景。 超导电性的应用十分广泛,例如超导磁悬浮列车、超导重力仪、超导计算机、超导微波器件等,超导电性还可以用于计量标准,在991年1月1日开始生效的伏特和欧姆的新实验基准中,电压基准就是以超导电性为基础。 本实验目的是通过对氧化物高温超导材料的测量与演示、加深理解超导体两个基本特性;了解超导磁悬浮原理;了解金属和半导体的电阻随温度变化以及温差电效应;掌握低温物理实验的基本方法:低温的获得、控制和测量。 【正文】 一、实验原理 1.超导现象、临界参数及实用超导体 (1)零电阻现象 将物体冷却到某一临界温度Tc以下时电阻突然降为零的现象,称为超导体的零电阻现象。不同的超导体的临界温度各不相同。如下图,用电阻法测量临界温度,把降温过程中电阻温度曲线开始从直线偏离处的温度称为起始转变温度Tc,onset,临界温度Tc定义为待测样品电阻从起始转变处下降到一半对应的温度,也称作超导转变的中点温度Tcm。电阻变化10%到90%所对应的温度间隔定义为转变宽度△Tc,电阻全降到零时的温度为零电阻温度Tc。通常说的超导转变温度Tc指Tcm。

西安交大《塞曼效应实验报告》

应物31 吕博成学号:10

塞曼效应 1896年,荷兰物理学家塞曼()在实验中发现,当光源放在足够强的磁场中时,原来的一条光谱线会分裂成几条光谱线,分裂的条数随能级类别的不同而不同,且分裂的谱线是偏振光。这种效应被称为塞曼效应。 需要首先指出的是,由于实验先后以及实验条件的缘故,我们把分裂成三条谱线,裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位 mc eB L π4=)。而实际上大多数谱线的塞曼分裂谱线多于三条,谱线的裂距可以大于也可 以小于一个洛伦兹单位,人们称这类现象为反常塞曼效应。反常塞曼效应是电子自旋假设的有力证据之一。通过进一步研究塞曼效应,我们可以从中得到有关能级分裂的数据,如通过能级分裂的条数可以知道能级的J 值;通过能级的裂距可以知道g 因子。 塞曼效应至今仍然是研究原子能级结构的重要方法之一,通过它可以精确测定电子的荷质比。 一.实验目的 1.学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2.观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3.利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二.实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为 B Mg E E B μ+=0 (1) 其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m hc B πμ4= );B 为磁感应强度。 对于S L -耦合 ) () ()()(121111++++-++ =J J S S L L J J g (2) 假设在无外磁场时,光源某条光谱线的波数为 )(010201~E E hc -=γ (3) 式中 h 为普朗克常数;c 为光速。

从众效应

从众效应 【从众效应】“也称乐队花车效应”,也就是我们通常所说的“随大流”,是指当个体受到群体的影响,包括引导或施加的压力时,会怀疑并改变自己原来的想法、判断以及行为,并且朝着与群体大多数人一致的方向变化。从众效应可以是因为对方“人多势众带来的气场上的压迫感”,也包括有对方“有权威性或者领导性”,迫于对这些非本直接和客观因素的影响而从众。 比如,在大学课堂上教授拿出一个瓶子,说是某种名贵的精油,在点燃后,教室里有同学说闻到了花香,还有同学说是玫瑰花香,后来几乎所有人都闻到玫瑰花香。最后,教授说这只是一瓶普通的自来水。所以,第一个说闻到玫瑰花香的同学也许是一种联想导致的错觉,而后边说闻到玫瑰花香的同学是追随他人所产生的趋同性,如果说第一位同学是心理暗示起了作用,那么后边的一众同学是受了从众心理的影响。而这种从众心理效应本质上没有侵害任何一方的利益,所以最后同学们呵呵一笑,这个课题小测式就结束了。 众效应产生的原因 1.当个体在群体中,为了适应环境,融入集体,个体会倾向于跟从大众的一致性喜好。 2.当个体担心自己偏离群体,不想被突出,被独立,于是选择从众。 3.当个体对某个问题、事件缺乏自己独立见解时,或者对自己的答案不确定时,个体特别容易倾向于对照群体其他大多数的意见,选择从众。 4.当个体对群体认可度高,经常会过滤自己的观点,出现盲目从众。 5.还有,当群体中有权威人物时,个体也会倾向于相信群体的意见,看法,于是也陷入从众效应。 再深入的分析,有些从众行为也只是表现上的从众 1?表面服从,内心也接受,所谓口服心服;

2?口服心不服,出于无奈只得表面服从,违心从众; 3?完全随大流,谈不上服不服的问题。 与其人云亦云,不如独立思考 研究表明,女性比男性容易从众,幼儿,青少年比成人容易从众,缺乏自信的比自信的人容易从众。 顺便分析一下类似的一个心理学效应——责任分散效应。 它属于群体心理学的领域,在某个场景或某个事件中,单个个体的责任感会很强,会对情况做出积极的反应,如果是处于群体中,个体责任感就会减弱很多,往往会不采取行动或比较懈怠,它也叫做旁观者效应。例如:在某个紧急的情况下,某人有危险或者境地,如果只有一个人在场,他往往会采取行动,施于援手,因为此时他的责任感很强。不想因为对于事情置之不理感到内疚或者负罪,而当处于群体中时,责任就被分散,他会想反正还有其他人,不单只有我,这种情况就造成就集体冷漠,三个和尚没水喝就源于心理学效应。 其实从众也有它的积极影响,当人在情境不确定的时候,其他人的行为最具有参考价值,具备行为参照的功能。特别在职场中,新人往往选择与同事保持一致,这样可以更容易的被团队接受。另外,在团队凝聚力方面,也表现出从众的行为可以更受团队认同。 一群幼小的沙鸥,无忧无虑地嬉戏在绿色的湖水中。一只勇敢的小沙鸥尝试着,挣扎着,试图展开翅膀飞向蓝天。它一次次不停地扑摔着,挣扎着,失败着,其余的沙鸥只是看着,突然间,那只沙鸥成功了,自由地翱翔于天际。在那只飞的沙鸥引领下,第二只、第三只沙鸥开始了同样的尝试……突然有一天,所有的沙鸥都学会了飞翔。 所以,积极的从众效应可以互相激励情绪,做出勇敢之举,有利于建立良好的社会氛围和完成群体目标,能使个体达到心理平衡,增强内心的安全感和自信心,还有助于学习他人的智慧经验,扩大视野,克服固执己见、盲目自信修正自己的思维方式等。

【实验报告】近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信, 了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。

二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四p液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。本实验中我们研究了液晶的基本物理性质 和电光效应等。发现液晶的双折射现象会对旋光角的大小产生的影响,在实验中通过测量液晶盒两面锚泊方向的差值,得到液晶盒扭曲角的大小为125度;测量了液晶的响应时间。观察液晶光栅的衍射现象,在“常黑模式”和“常白模式”下分别测量了液晶升压和降压过程的电光响应曲线,求得了阈值电压、饱

大学物理实验报告范例

怀化学院 大学物理实验实验报告 系别物信系年级2009专业电信班级09电信1班姓名张三学号09104010***组别1实验日期2009-10-20 实验项目:长度和质量的测量 【实验题目】长度和质量的测量

【实验目的】 1. 掌握米尺、游标卡尺、螺旋测微计等几种常用测长仪器的读数原理和使用方法。 2. 学会物理天平的调节使用方法,掌握测质量的方法。 3. 学会直接测量和间接测量数据的处理,会对实验结果的不确定度进行估算和分析,能正确地表示测量结果。 【实验仪器】(应记录具体型号规格等,进实验室后按实填写) 直尺(50cm)、游标卡尺(0.02mm)、螺旋测微计(0~25mm,0.01mm),物理天平(TW-1B 型,分度值0.1g ,灵敏度1div/100mg),被测物体 【实验原理】(在理解基础上,简明扼要表述原理,主要公式、重要原理图等) 一、游标卡尺 主尺分度值:x=1mm,游标卡尺分度数:n (游标的n 个小格宽度与主尺的n-1小格长度相等),游标尺分度值: x n n 1 -(50分度卡尺为0.98mm,20分度的为:0.95mm ),主尺分度值与游标尺分度值的差值为:n x x n n x =-- 1,即为游标卡尺的分度值。如50分度卡尺的分度值为:1/50=0.02mm,20分度的为:1/20=0.05mm 。 读数原理:如图,整毫米数L 0由主尺读取,不足1格的小数部分l ?需根据游标尺与主尺对 齐的刻线数k 和卡尺的分度值x/n 读取:n x k x n n k kx l =--=?1 读数方法(分两步): (1)从游标零线位置读出主尺的读数.(2)根据游标尺上与主尺对齐的刻线k 读出不足一分格的小数,二者相加即为测量值.即: n x k l l l l +=?+=00,对于50分度卡尺:02.00?+=k l l ;对20分度:05.00?+=k l l 。实际读数时采取直读法读数。 二、螺旋测微器 原理:测微螺杆的螺距为,微分筒上的刻度通常为50分度。当微分筒转一周时,测微螺杆前进或后退mm ,而微分筒每转一格时,测微螺杆前进或后退50=。可见该螺旋测微器的分度值为mm ,即千分之一厘米,故亦称千分尺。 读数方法:先读主尺的毫米数(注意刻度是否露出),再看微分筒上与主尺读数准线对齐的刻线(估读一位),乖以, 最后二者相加。 三:物理天平 天平测质量依据的是杠杆平衡原理 分度值:指针产生1格偏转所需加的砝码质量,灵敏度是分度值的倒数,即n S m =?,它表示 天平两盘中负载相差一个单位质量时,指针偏转的分格数。如果天平不等臂,会产生系统误差,消除方法:复称法,先正常称1次,再将物放在右盘、左盘放砝码称1次(此时被测质量应为砝码质量减游码读数),则被测物体质量的修正值为:21m m m ?= 。 【实验内容与步骤】(实验内容及主要操作步骤) 1. 米尺测XX 面积:分别测量长和宽各一次。 2. 游标卡尺测圆环体积:(1)记下游标卡尺的分度值和零点误差。(2)用游标卡尺测量圆环

浅谈课堂气氛中的从众效应

浅谈课堂气氛中的从众效应 摘要:在现实生活中,课堂气氛已经成为许多家长和孩子衡量学校教育质量的一个关键指标。通过对现实生活中课堂的研究以课堂气氛为出发点发现其中存在的从众效应与课堂气氛的好坏有着密切的联系,以综述的方法探讨了课堂气氛中从众效的原因及其对课堂气氛的积极和消极作用,并提出如何对课堂气氛中的从众效应进行调控,对目前的课堂教学有实际意义。 关键词:课堂气氛从众效应作用 调控 中小学教学通常都是在课堂内进行的,因此课堂气氛是促进或抑制学生学习的重要因素,关系到学生的学习积极性和学习成绩的好坏。许多教育实践表明良好的课堂气氛能使学生情绪高昂,智力活动呈最佳状态,还会使学生得到一种愉快成功的体验,并陶冶情操保持一种积极的学习心态。因此,心理学家通过实验研究从不同角度分析了影响课堂气氛的因素,但并没有系统的从众的角度来研究。教育学家认为个别学生的态度与情感并不构成课堂气氛,当多数学生具有一致的态度与情感时就会形成具有优势的课堂气氛。因此,存在于班级的从众效应是影响课堂气氛的一个重要因素,在参考各种文献和名家观点的基础上分析从众效应对课堂气氛的影响,从现实的角度来考察从众与课堂气氛的关系,对当代课堂教学有重要意义。 1 课堂气氛 课堂气氛,又称班风,通常指伴随师生之间的人际互动而形成的某些占优势的态度和情感的综合状态。在实际教学中,我们经常看到不同类型的课堂气氛,有的课堂气氛积极热烈,有的则拘谨沉默,死气沉沉。即使是同一个课堂在不同的任课老师的指导下也是大不相同。实践表明,学生之间的相互感染可以影响课堂气氛,其中隐含着一种心理学效应——从众效应。 班级是一个特殊的群体,在这群体中有一定的社会交往结构,有多种人际关系、社会气氛、行为规范等等,日常的课堂教学正是在这样一个相对封闭的教学系统中进行,学生处于这种封闭的集体环境中很容易彼此影响形成群体压力。当课堂上大部分同学都积极回答问题时,其余的同学迫于群体压力或为了与群体保持一致也积极思考这样全班就会形成积极和谐的课堂气氛,在这种气氛下就会不

塞曼效应实验报告

塞曼效应实验报告 一、实验目的与实验仪器 1. 实验目的 (1)学习观察塞曼效应的方法,通过塞曼效应测量磁感应强度的大小。 (2)学习一种测量电子荷质比的方法。 2.实验仪器 笔形汞灯+电磁铁装置,聚光透镜,偏振片,546nm滤光片,F-P标准具,标准具间距(d=2mm),成像物镜与测微目镜组合而成的测量望远镜。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1.塞曼效应 (1)原子磁矩和角动量关系 用角动量来描述电子的轨道运动和自旋运动,原子中各电子轨道运动角动量的矢量和即原子的轨道角动量L,考虑L-S耦合(轨道-自旋耦合),原子的角动量J =L +S。量子力学理论给出各磁矩与角动量的关系: L = - L,L = S = - S,S = 由上式可知,原子总磁矩和总角动量不共线。则原子总磁矩在总角动量方向上的分量 为: J = g J,J = J L为表示原子的轨道角量子数,取值:0,1,2… S为原子的自旋角量子数,取值:0,1/2,1,3/2,2,5/2… J为原子的总角量子数,取值:0,1/2,1,3/2… 式中,g=1+为朗德因子。 (2)原子在外磁场中的能级分裂 外磁场存在时,与角动量平行的磁矩分量J与磁场有相互作用,与角动量垂直的磁矩分量与磁场无相互作用。由于角动量的取向是量子化的,J在任意方向的投影(如z方向)为: = M,M=-J,-(J-1),-(J-2),…,J-2,J-1,J 因此,原子磁矩也是量子化的,在任意方向的投影(如z方向)为: =-Mg 式中,玻尔磁子μB =,M为磁量子数。

具有磁矩为J的原子,在外磁场中具有的势能(原子在外磁场中获得的附加能量): ΔE = -J·=Mg B 则根据M的取值规律,磁矩在空间有几个量子化取值,则在外场中每一个能级都分裂为等间隔的(2J+1)个塞曼子能级。原子发光过程中,原来两能级之间电子跃迁产生的一条光谱线也分裂成几条光谱线。这个现象叫塞曼效应。 2.塞曼子能级跃迁选择定则 (1)选择定则 未加磁场前,能级E2和E1之间跃迁光谱满足: hν = E2 - E1 加上磁场后,新谱线频率与能级之间关系满足: hν’= (E2+ΔE2) – (E1+ΔE1) 则频率差:hΔν= ΔE2-ΔE1= M2g2 B -M1g1B= (M2g2- M1g1)B 跃迁选择定则必须满足: ΔM = 0,±1 (2)偏振定则 当△M=0时,产生π线,为振动方向平行于磁场的线偏振光,可在垂直磁场方向看到。 当△M=±1时,产生σ谱线,为圆偏振光。迎着磁场方向观察时,△M=1的σ线为左旋圆偏振光,△M=-1的σ线为右旋圆偏振光。在垂直于磁场方向观察σ线时,为振动方向垂直于磁场的线偏振光。 3. 能级3S13P2 L01 S11 J12 g23/2 M10-1210-1-2 Mg20-233/20-3/2-3汞原子的绿光谱线波长为,是由高能级{6s7s}S1到低能级{6s6p}P2能级之间的跃迁,其上下能级有关的量子数值列在表1。3S1、3P2表示汞的原子态,S、P分别表示原子轨道量子数L=0和1,左上角数字由自旋量子数S决定,为(2S+1),右下角数字表示原子的总角动量量子数J。 在外磁场中能级分裂如图所示。外磁场为0时,只有的一条谱线。在外场的作用下,上能级分裂为3条,下能级分裂为5条。在外磁场中,跃迁的选择定则对磁量子数M的要求为:△M=0,±1,因此,原先的一条谱线,在外磁场中分裂为9条谱线。 9条谱线的偏振态,量子力学理论可以给出:在垂直于磁场方向观察,9条分裂谱线的强度(以中心谱线的强度为100)随频率增加分别为,,75,75,100,75,75,,. 标准具 本实验通过干涉装置进行塞曼效应的观察。我们选择法布里-珀罗标准具(F-P标准具)作为干涉元件。F-P标准具基本组成:两块平行玻璃板,在两板相对的表面镀有较高反射率的薄膜。 多光束干涉条纹的形成

近代物理实验总结

近代物理实验总结 通过这个学期的大学物理实验,我体会颇深。首先,我通过做实验了解了许多实验的基本原理和实验方法,学会了基本物理量的测量和不确定度的分析方法、基本实验仪器的使用等;其次,我已经学会了独立作实验的能力,大大提高了我的动手能力和思维能力以及基本操作与基本技能的训练,并且我也深深感受到做实验要具备科学的态度、认真态度和创造性的思维。下面就我所做的实验我作了一些总结。 一.核磁共振实验 核磁共振实验中为什么要求磁场大均匀度高的磁场?扫场线圈能否只放一个?对两个线圈的放置有什么要求?测量共振频率时交变磁场的幅度越小越好? 1, 核磁共振实验中为什么要求磁场大均匀度高的磁场? 要求磁场大是为了获得较大的核磁能级分裂。这样,根据波尔茨 曼,低能和高能的占据数(population)的“差值增大,信号增强。 均匀度高是为了提高resolution. 2. 扫场线圈能否只放一个?对两个线圈的放置有什么要求? 扫场线圈可以只放一个。若放两个,这两个线圈的放置要相互垂直, 且均垂直于外加磁场。 3. 测量共振频率时交变磁场的幅度越小越好? 不对。但是太大也不好(会有信号溢出)应该有合适的FID信号 二.密立根有实验 对油滴进行测量时,油滴有时会变模糊,为什么?如何避免测量过程丢失油滴?若油滴平很调节不好,对实验结果有何影响?为什么每测量一次tg都要对油滴进行一次平衡调节?为什么必须使油滴做匀速运动或静止?试验中如 何保证油滴在测量范围内做匀速运动? 1、油滴模糊原因有:目镜清洁不够导致局部模糊或者是油滴的平衡没 有调节好导致速度过快 为防止测量过程中丢失油滴,油滴的速度不要太大,尽可能比较小 一些,这样虽然比较费时间,但不会出现油滴模糊或者丢失现象 2、根据实验原理可知,如果油滴平衡没有调节好,则数据必然是错误 的,结果也是错误的。因为油滴的带电量计算公式要的是平衡时的 数据 因为油滴很微小,所以不同的油滴其大小和质量都有一些差异,导 致其粘滞力和重力都会变化,因此需要重新调节平衡才可以确保实 验是在平衡条件下进行的。

近代物理实验报告

近代物理实验报告 实验题目: 1 真空获得与真空测量 2 热蒸发法制备金属薄膜材料 3 磁控溅射法制备金属薄膜材料班级: 学号: 学生姓名: 实验教师: 2010-2011学年第1学期

实验1真空获得与真空测量 实验时间: 地点: 指导学生: 【摘要】本实验采用JCP-350C 型热蒸发/磁控溅射真空镀膜机,初步了解真空获得与测量的方法,熟悉使用镀膜机的机械泵和油扩散泵,能用测量真空的热偶真空计和电离真空计等实验仪器,掌握真空的获得和测量方法。 【关键词】镀膜机;机械泵;扩散泵;真空获得和测量 一、实验目的 1.1、学习并了解真空科学基础知识,学会掌握低、高真空获得和测量的原理及方法; 1.2、熟悉实验设备和仪器的使用。 二、实验仪器 JCP-350C 型热蒸发/磁控溅射真空镀膜机。 三、真空简介 3.1真空 “真空”这一术语译自拉丁文Vacuo ,其意义是虚无。其实真空应理解为气体较稀薄的空 间。在指定的空间内,低于一个大气压力的气体状态统称为真空。 3.2真空的等级 真空状态下气体稀薄程度称为真空度,通常用压力值表示。1958年,第一界国际技术 会议曾建议采用“托”(Torr)作为测量真空度的单位。国际单位制(SI)中规定压力的单位为帕(Pa)。我国采用SI 规定。 ● 1标准大气压(1atm)≈1.013×105Pa(帕) ● 1Torr≈1/760atm≈1mmHg ● 1Torr≈133Pa ● 我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。 ● 粗真空 Pa 35103331~100131???? ● 低真空 Pa 13103331~103331-???? ● 高真空 Pa 61 103331~103331--???? ● 超高真空 Pa 106103331~103331--???? ● 极高真空 Pa 10103331-??

塞曼效应实验报告

1、前言和实验目的 1.了解和掌握WPZ-Ⅲ型塞曼效应仪和利用其研究谱线的精细结构。 2.了解法布里-珀罗干涉仪的的结构和原理及利用它测量微小波长差值。 3.观察汞546.1nm (绿色)光谱线的塞曼效应,测量它分裂的波长差,并计算电子的荷质比的实验值和标准值比较。 2、实验原理 处于磁场中的原子,由于电子的j m 不同而引起能级的分裂,导致跃迁时发出的光子的频率产生分裂的现象就成为塞曼效应。下面具体给出公式推导处于弱磁场作用下的电子跃迁所带来的能级分裂大小。 总磁矩为 J μ 的原子体系,在外磁场为B 中具有的附加能为: E ?= -J μ *B 由于我们考虑的是反常塞曼效应,即磁场为弱磁场,认为不足以破坏电子的轨道-自旋耦合。则我们有: E ?= -z μB =B g m B J J μ 其中z μ为J μ 在z 方向投影,J m 为角动量J 在z 方向投影的磁量子数,有12+J 个值,B μ= e m eh π4称为玻尔磁子,J g 为朗德因子,其值为 J g =) 1(2) 1()1()1(1++++-++ J J S S L L J J 由于J m 有12+J 个值,所以处于磁场中将分裂为12+J 个能级,能级间隔为B g B J μ。当没有磁场时,能级处于简并态,电子的态由n,l,j (n,l,s )确定,跃迁的选择定则为Δs=0, Δl=1±.而处于磁场中时,电子的态由n,l,j,J m ,选择定则为Δs=0,Δl=1±,1±=?j m 。 磁场作用下能级之间的跃迁发出的谱线频率变为: )()(1122' E E E E hv ?+-?+==h ν+(1122g m g m -)B μB 分裂的谱线与原谱线的频率差ν?为: ν?=' ν-ν=h B g m g m B /)(1122μ-、 λ?= c ν λ?2 =2λ (1122g m g m -)B μB /hc =2 λ (1122g m g m -)L ~

社会心理学--从众心理

从众心理 从众心理即指个人受到外界人群行为的影响,而在自己的知觉、判断、认识上表现出符合于公众舆论或多数人的行为方式,而实验表明只有很少的人保持了独立性,没有被从众,所以从众心理是大部分个体普遍所有的心理现象。由一个人或一个团体的真实的或是臆想的压力所引起的人的行为或观点的变化。“羊群效应”是指管理学上一些企业的市场行为的一种常见现象。 经济学里经常用“羊群效应”来描述经济个体的从众跟风心理。因此,“羊群效应”就是比喻人都有一种从众心理,从众心理很容易导致盲从,而盲从往往会陷入骗局或遭到失败。 (1)由于“羊群行为”者往往抛弃自己的私人信息追随别人,这会导致市场信息传递链的中断。但这一情况有两面的影响:第一,“羊群行为”由于具有一定的趋同性,从而削 弱了市场基本面因素对未来价格走势的作用。(2)如果“羊群行为”超过某一限度,将诱发另一个重要的市场现象一一过度反应的出现。(3)所有“羊群行为”的发生基础都是信息的不完全性。因此,一旦市场的信息状态发生变化,如新信息的到来,“羊群行为”就会瓦解。这时由“羊群行为”造成的股价过度上涨或过度下跌,就会停止,甚至还会向相反的方向过度回归。这意味着“羊群行为”具有不稳定性和脆弱性。 由于信息相似性产生的类羊群效应由于信息不完全产生的羊群效应 从众效应 引发大学生从众效应最值得注意的是“班级效应”和“宿舍效应” 班级效应”、“宿舍效应”在班风、舍风中的作用,由此可见一斑。反之,庸俗的从众行为往往会导致班风、舍风消极落后。 大学校园的从众行为,既有积极方面,又有消极方面。优化群体结构,利用从众行为的积极影响,防止其消极作用,具有重要的意义。 从众行为的过分普遍,反映了部分大学生自我意识弱化,独立性较差,缺乏个体倾向性的世界观、人生观、价值观,这是从众行为中消极现象抬头的主要原因,即使从众行为出现积极效应,但一旦失却这种从众氛围,又很容易不知所措,找不到自己努力的方向,走向社会后的迷悯、失落,实际上这是从众现象最直接的后遗症。 此外,一味从众也容易导致大学生心理障碍的发生。意味着自己失去了一片晴朗的天空,抛却了一片属于自己的领地。盲目从众意味着部分大学生丢失了以个体色彩的思维和行动编织的草帽,在喧哗与骚动中麻木自己,“创新意识“在头脑中只成了四个机械的汉字,所接受的高等教育也锈蚀成了斑驳的条条框框,毕业证书和学位证书只成了人生进程中的标志,却难以成为升华人生的动力。大学生,摆脱从众的盲目色彩,用独立的思想和明晰的脚印使自己主动融入集体的行列,这样,你将拥有一个真正属于自己的人生。

西安交大《塞曼效应实验报告》(资料参考)

塞 曼 效 应 实 验 报 告 应物31 吕博成学号:2120903010

塞曼效应 1896年,荷兰物理学家塞曼(P.Zeeman )在实验中发现,当光源放在足够强的磁场中时,原来的一条光谱线会分裂成几条光谱线,分裂的条数随能级类别的不同而不同,且分裂的谱线是偏振光。这种效应被称为塞曼效应。 需要首先指出的是,由于实验先后以及实验条件的缘故,我们把分裂成三条谱线,裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位 mc eB L π4=)。而实际上大多数谱线的塞曼分裂谱线多于三条,谱线的裂距可以大于也可 以小于一个洛伦兹单位,人们称这类现象为反常塞曼效应。反常塞曼效应是电子自旋假设的有力证据之一。通过进一步研究塞曼效应,我们可以从中得到有关能级分裂的数据,如通过能级分裂的条数可以知道能级的J 值;通过能级的裂距可以知道g 因子。 塞曼效应至今仍然是研究原子能级结构的重要方法之一,通过它可以精确测定电子的荷质比。 一.实验目的 1.学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2.观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3.利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二.实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为 B Mg E E B μ+=0 (1) 其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m hc B πμ4= );B 为磁感应强度。 对于S L -耦合 ) () ()()(121111++++-++ =J J S S L L J J g (2) 假设在无外磁场时,光源某条光谱线的波数为

南京大学近代物理实验2017版

南京大学近代物理实验2017版 篇一:南京大学-法拉第效应 法拉第效应 (南京大学物理学院江苏南京 210000) 摘要:平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也就是磁场使介质具有了旋光性,这种现象称为法拉第效应。本实验通过测量不同磁场下的法拉第转角,计算出介质的费尔德常数。 关键词:法拉第效应;法拉第转角;费尔德常数;旋光性 一、实验目的 1.了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二、实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及介质中的磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第_费尔得定律。 (1) 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得(Verdet)常数,它与光频和温度有关。几乎所有的

物质(包括气体液体固体)都有法拉第效应,但一般都很不显著。不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(V>0),反之叫负旋(V篇二:法拉第效应南京大学 法拉第效应 引言 1845年,英国科学家法拉第在探究电磁现象和光学现象之间的关系时发现:当一束平面偏振光穿过介质时,如果在介质中沿光的传播方向加上一个磁场,就会观察到光经过样品后光的振动面转过一个角度,也即磁场使介质居于了旋光性,这种现象后来就称为法拉第效应。 法拉第效应有许多方面的应用,它可以作为物质结构研究的手段,如根据结构不同的碳氢化合物其法拉第效应的表现不同来分析碳氢化合物导体物理的研究中,它可以用来测量载流子得得有效质量、迁移率和提供能带结构的信息;在激光技术中,利用法拉第效应的特性,制成了光波隔离、光频环形器、调制器等;在磁学测量方面,可以利用法拉第效应测量脉冲磁场。 实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度θF与光波在介质中走过的路程l及磁感应强度在光的传播方向上的分量BH成正比,这个规律又叫法拉第—费

近代物理镀膜机实验报告

物理学本科专业近代物理实验报告 实验题目: 1 真空获得与真空测量 2 热蒸发法制备金属薄膜材料 3 磁控溅射法制备金属薄膜材料 班级:*** 学号:*** 学生姓名:*** 实验教师:*** 2014-2015学年第1学期

实验1真空获得与真空测量 地点:福煤实验楼D 栋405 【摘要】本文介绍了真空技术的有关知识,阐述了低真空和高真空的获得与测量方法。 【关键词】机械泵;扩散泵;真空技术;低真空;高真空;获得与测量 1.实验目的 (1)了解真空技术的基本知识。 (2)掌握真空获得和测量的方法。 (3)熟悉有关设备和仪器的使用方法。 2. 实验原理 2.1真空知识 2.1.1真空的概念及真空的区域划分 “真空”这一术语译自拉丁文Vacuo ,其意义是虚无。所谓真空,指的是压强比一个标准大气压更低的稀薄气体状态的空间。气体稀薄的程度称为真空度,通常用气体压强的大小来表示。气体越稀薄,气体压强越小,真空度越高;反之,则真空度越低。 1958年,第一界国际技术会议曾建议采用“托”(Torr )作为测量真空度的单位。国际单位制(SI)中规定压力的单位为帕(Pa )。我国采用SI 规定。 ● 1标准大气压(1atm)≈1.013×105Pa(帕) ● 1Torr≈1/760atm≈1mmHg ● 1Torr≈133Pa 我国真空区域划分为:粗真空、低真空、高真空、超高真空和极高真空。 ● 粗真空 Pa 3 5103331~100131???? ● 低真空 Pa 1 3 103331~103331-???? ● 高真空 Pa 61103331~103331--???? ● 超高真空 Pa 106 103331~10 3331--???? ● 极高真空 Pa 10 103331-??

塞曼效应实验报告

近代物理实验报告 塞曼效应实验 学院 班级 姓名 学号 时间 2014年3月16日

塞曼效应实验实验报告 【摘要】: 本实验通过塞曼效应仪与一些观察装置观察汞(Hg)546.1nm谱线(3S1→3P2跃迁)的塞曼分裂,从理论上解释、分析实验现象,而后给出横效应塞满分裂线的波数增量,最后得出荷质比。 【关键词】:塞曼效应、汞546.1nm、横效应、塞满分裂线、荷质比 【引言】: 塞曼效应是原子的光谱线在外磁场中出现分裂的现象,是1896年由荷兰物理学家塞曼发现的。首先他发现,原子光谱线在外磁场发生了分裂;随后洛仑兹在理论上解释了谱线分裂成3条的原因,这种现象称为“塞曼效应”。在后来进一步研究发现,很多原子的光谱在磁场中的分裂情况有别于前面的分裂情况,更为复杂,称为反常塞曼效应。 塞曼效应的发现使人们对物质光谱、原子、分子有更多了解,塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。本实验采取Fabry-Perot(以下简称F-P)标准具观察Hg的546.1nm谱线的塞曼效应,同时利用塞满效应测量电子的荷质比。 【正文】: 一、塞曼分裂谱线与原谱线关系 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(P J)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能:

由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下: 其中: L为总轨道角动量量子数 S为总自旋角动量量子数 J为总角动量量子数 M只能取J,J-1,J-2 …… -J(共2J+1)个值,即ΔE有(2J+1)个可能值。 无外磁场时的一个能级,在外磁场作用下将分裂成(2J+1)个能级,其分裂的能级是等间隔的,且能级间隔 2、塞曼分裂谱线与原谱线关系: (1) 基本出发点:

大学物理实验报告范例

怀化学院 大学物理实验实验报告系别数学系年级2010专业信息与计算班级10信计3班姓名张三学号**组别1实验日期2011-4-10 实验项目:验证牛顿第二定律

1.气垫导轨的水平调节 可用静态调平法或动态调平法,使汽垫导轨保持水平。静态调平法:将滑块在汽垫上静止释放,调节导轨调平螺钉,使滑块保持不动或稍微左右摆动,而无定向运动,即可认为导轨已调平。 2.练习测量速度。 计时测速仪功能设在“计时2”,让滑块在汽垫上以一定的速度通过两个光电门,练习测量速度。 3.练习测量加速度 计时测速仪功能设在“加速度”,在砝码盘上依次加砝码,拖动滑块在汽垫上作匀加速运动,练习测量加速度。 4.验证牛顿第二定律 (1)验证质量不变时,加速度与合外力成正比。 用电子天平称出滑块质量滑块m ,测速仪功能选“加速度”, 按上图所示放置滑块,并在滑块上加4个砝码(每个砝码及砝码盘质量均为5g),将滑块移至远离滑轮一端,使其从静止开始作匀加速运动,记录通过两个光电门之间的加速度。再将滑块上的4个砝码分四次从滑块上移至砝码盘上,重复上述步骤。 (2)验证合外力不变时,加速度与质量成反比。 计时计数测速仪功能设定在“加速度”档。在砝码盘上放一个砝码(即 g m 102=),测量滑块由静止作匀加速运动时的加速度。再将四个配重块(每个配重 块的质量均为m ′=50g)逐次加在滑块上,分别测量出对应的加速度。 【数据处理】 (数据不必在报告里再抄写一遍,要有主要的处理过程和计算公式,要求用作图法处理的应附坐标纸作图或计算机打印的作图) 1、由数据记录表3,可得到a 与F 的关系如下: 由上图可以看出,a 与F 成线性关系,且直线近似过原点。 上图中直线斜率的倒数表示质量,M=1/=172克,与实际值M=165克的相对误差: %2.4165 165 172=- 可以认为,质量不变时,在误差范围内加速度与合外力成正比。

VCO压控振荡器实验报告

VCO压控振荡器实验报告 目录章节 设计要求及方案选择 (2) 框内电路设计(EWB仿真) (5) 总电路叙述 (10) 器件表 (12) 总电路图 (13) 问题及修改方案 (13) 体会 (14) 参考书目及文献资料 (17) 附录:总电路图 (17)

设计要求及方案选择 1.设计内容 V/F转换(VCO压控振荡器) 2. 设计要求 输入0—10V电压,输出0—20KHz脉冲波(或者0—10KHz 对称方波)。绝对误差在正负30Hz以内。 3. 设计方案 (1)RC压控振荡器

(2)双D触发器式的VCO电路 图片来源CIC中国IC网 如图所示为双D触发器式的VCO。电路输出一个占空比50%的方波信号,而消耗的电流却很小。当输入电压为5~12V 时,输出频率范围从20~70kHz。首先假设IC-A的初始状态是Q=低电平。此时VDl被关断,Vi通过Rl向Cl充电。当Cl 上的电压达到一定电平时,IC-A被强制翻转,其Q输出端变成高电平,Cl通过VDl放电。同时,IC-A的CL输入端也将变成低电平,强制IC-A再翻回到Q=低电平。由于R2和C2的延时作用,保证了在IC-A返回到Q为低电平以前,把Cl的电放掉。IC-A输出的窄脉冲电流触发IC-B,产生一个占空比为50%的输出脉冲信号。

(3)具有三角波和方波输出的压控振荡器 图片来源CIC中国IC网 如图所示为具有三角波和方波输出的压控振荡电路。该电路是一个受控制电压控制的振荡器。它具有很好的稳定性和极好的线性,并且有较宽的频率范围。电路有两个输出端,一个是方波输出端,另一个为三角波输出端。图中,A1为倒相器,A2为积分器,A3为比较器。场效应管Q1用来变换积分方向。比较器的基准电压是由稳压二极管D1、D2提供,积分器的输出和基准电压进行比较产生方波输出。电阻R5、R6用来降低Q1的漏极电压,以保证大输入信号时Q1能完全截止。电阻R7、R8和二极管D3、D4是为了防止A3发生阻塞。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3