微塑料在海洋中的分布、生态效应及载体作用

您所在的位置:网站首页 塑料中的pet1的危害 微塑料在海洋中的分布、生态效应及载体作用

微塑料在海洋中的分布、生态效应及载体作用

2024-07-10 06:35| 来源: 网络整理| 查看: 265

塑料是一类由单体经加聚或缩聚反应而形成的高分子有机化合物[1]。从20世纪70年代, 塑料已被广泛应用于多种领域[2], 世界塑料产量在2017年达到近3.5亿吨[3]。由于全球塑料的总产量逐年增加, 且塑料降解速率慢, 导致塑料在土壤、海洋、淡水中随处可见[4-6]。中国海洋微塑料污染形势也不容乐观, 塑料碎片不仅大量存在于沿海水域, 而且在南海陆坡及深海生物体内也有发现[7]。

海洋中常见的塑料碎片包括聚氯乙烯(PVC)、聚酰胺(PA)、聚对苯二甲酸乙二醇酯(PET)、聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS)等[8](表 1)。粒径小于5 mm的塑料碎片被定义为微塑料[9], 按照其形成方式可分为初生微塑料和次生微塑料。初生微塑料是指工业生产过程中原初就被制备成为微米级的小粒径塑料颗粒, 如化妆品中的塑料微珠, 由于体积小, 容易逃过水处理系统, 这使它们能够进入自然排水系统, 并最终进入海洋中。次生塑料微粒则指大型塑料在环境中分裂或分解而成的塑料微粒或碎片。陆源塑料废弃物在雨水、风浪的驱动下进入海洋中, 海上渔业活动可直接产生塑料废弃物, 塑料废弃物因光降解、氧化和水解降解作用而碎化产生次生微塑料[10-11]。微塑料可以吸附微生物、微藻、重金属、抗生素等, 使其密度和表面电荷发生变化, 黏附的物质不仅改变微塑料的毒性和生物利用度, 还会引起微塑料浮力的变化, 促使其发生沉降[12-13]。

表 1 常见微塑料种类及密度 Tab. 1 Types and densities of common microplastics 类型 主要用途 密度/(kg·m–3) 聚丙烯(PP) 瓶盖、渔具、地毯, 饮用吸管等 0.90~0.92 聚乙烯(PE) 塑料袋、薄膜制品、个护产品中的微球等 0.94~0.95 泡沫聚苯乙烯(EPS) 冷却箱、绝缘材料、漂浮材料、杯具等 0.01~1.05 聚苯乙烯(PS) 一次性餐具、装璜、医疗、个护产品中的微球等 1.04~1.09 聚酰胺(PA) 渔网、纺织、牙刷、汽车工业、医疗等 1.13~1.15 聚氯乙烯(PVC) 薄膜、管材、集装箱、地板等 1.16~1.30 聚对酞酸乙二酯(PET) 饮料瓶、纺织、产品包装、薄膜、电器部件等 1.34~1.39 表选项

受到生物和非生物因素的影响, 微塑料在水生生态系统中广泛存在, 对水环境中生物的生存造成威胁[14]。微塑料可以进入生物的器官、组织[15], 随着生物在食物网中迁移、积累[16], 对生物的生存、遗传产生负面影响[17]。此外, 微塑料与生物、污染物的相互作用会威胁海洋生态系统的健康与稳定[18]。本文主要综述微塑料在海洋环境中的分布、生态效应及载体作用, 以期促进海洋环境中微塑料的研究工作, 为海洋环境的保护提供参考。

1 海洋环境中的微塑料

近年来, 关于微塑料污染特征的研究很多, 且大都集中在海洋环境中。海洋中的微塑料80%来源于陆地, 其次是海上生产活动[19]。陆地来源主要有道路运输中的轮胎磨损和车辆风化、工业生产中的污水排放和塑料制造、日常生活中的洗涤和清洁产品的使用等。捕捞、运输、养殖和旅游等海上生产活动也是微塑料的来源。由此产生的微塑料或塑料废物直接进入海洋或通过参与海陆间水循环过程而间接地进入海洋生态系统[20], 具体途径主要有(图 1): 1) 河流输入; 2) 大气沉降; 3) 污水排放; 4) 海上生产活动[21]。

图 1 微塑料进入海洋生态系统的途径 Fig. 1 Pathways of microplastics entering the marine ecosystems 图选项 1.1 海洋中微塑料的分布

从极地[22]到赤道, 从人口稠密的地区到偏远无人居住的岛屿, 微塑料已经入侵了多数海洋生物的栖息地(表 1和表 2), 这些塑料碎片漂浮于海洋表层水中[23]、滞留于海岸线上或沉入海底。

表 2 不同海洋区域沉积物中微塑料的丰度及粒径 Tab. 2 Abundance and size of microplastics in sediments from different marine areas 调查区域 微塑料丰度 丰度单位 粒径范围/mm 参考文献 亚洲 渤海 8.59±2.77 个/50 g 0.066~4.98 [57] 马尔代夫Vavvaru岛北岸 1 029±1 134 个/m2 1~5 [62] 安达曼岛南部沿岸 414.35±87.4 个/km 0.1~5 [48] 波斯湾海岸线 3 252±2 766 个/m2 0.3~5 [76] 阿拉伯联合酋长国迪拜沿海 59.78±36.96 个/kg 0.001 2~5 [71] 印度尼西亚万丹沿海 267±98 个/kg 0.000 45~5 [83] 非洲 南非东南沿岸 3 308±1 449* 个/m2 0.08~5 [67] 尼日利亚拉各斯Badagry海滩 3.6±3.5 个/kg 1~5 [59] 尼日利亚拉各斯Elegushi海滩 119.6±38.5 个/kg 1~5 [59] 阿尔及利亚安纳巴沿岸 649.33±184.02* 个/kg 0.81~2.16 [9] 欧洲 挪威大陆架 370±690 个/kg 0.045~5 [23] 比利时港口 166.7±92.1 个/kg 0.038~1 [177] 比利时沿海海滩 92.8±37.2 个/kg 0.038~1 [177] 北美洲 美国弗吉尼亚渔夫岛 1 410±810 个/kg 0.5~5.0 [78] 美国北卡罗来纳州 1 410±810 个/kg 0.5~5.0 [78] 南美洲 秘鲁利马沿海 489.7±143.5* 个/m2 1~4.75 [56] 大洋洲 澳大利亚东海岸 185.50±93.36 个/kg 0.1~4.9 [66] 南极洲 南极洲罗瑟拉角沿海 0.52±1.08 个/10 mL 2~5 [21] 注: “*”表示该区域的最大丰度 表选项 表 3 不同海洋区域水体中微塑料的丰度及粒径 Tab. 3 Abundance and size of microplastics in water mass of different marine areas 调查区域 微塑料丰度 丰度单位 粒径范围/mm 参考文献 太平洋 加拿大温哥华西海岸 1 710±1 110 个/m3 0.064~5 [65] 渤海 0.33±0.34 个/m3 0.3~5 [44] 中国海南海口湾 0.44±0.21 个/m3 0.33~4.9 [81] 东北太平洋 279±178 个/m3 0.064~5 [65] 印度洋 南非东南部沿海 1 215±276.7* 个/m3 0.08~5 [67] 伊朗恰尔哈尔湾 0.49±0.43 个/m3 0.1~5 [84] 印度洋亚热带环流区 120.4×1010a 个/km2 0.33~4.75 [79] 大西洋 大西洋东部沿海 1.15±1.45 个/m3 0.25~5 [172] 罗科尔海槽 70.8a 个/m3 0.4~5 [74] 瑞典比约克港口 450±283 个/m3 0.08~5 [77] 瑞典比约克渡口 167±126 个/m3 0.08~5 [77] 东北大西洋 2.46±2.43 个/m3 0.2~5 [85] 格林兰岛东北沿海 2.4±0.8 个/m3 0.08~5 [47] 南冰洋 南极半岛沿海 1 794a 个/km2 0.33~5 [47] 罗斯海沿岸 0.17±0.34 个/m3 0.06~5 [47] 北冰洋 挪威斯瓦尔巴特群岛沿海 0.34±0.31 个/m3 0.25~5 [73] 地中海 地中海西北部 0.116a 个/km2 0.33~5 [47] 注: “*”表示该区域的最大丰度”; “a”表示该区域的平均丰度, 原文中未给出标准差 表选项 1.1.1 近海微塑料污染

近岸海域是海洋系统和陆地系统的交汇区域, 与人类活动息息相关[24]。目前, 有关世界各沿海地区微塑料分布的研究较多, 主要包括潮间带微塑料的污染特征、近岸海水和近岸沉积物中微塑料的污染特征等[25-27]。微塑料进入海洋后随着风浪、悬浮沙及底质运动而迁移, 最终汇集在海滩和近岸沉积物中[28]。

海滩和近岸沉积物中微塑料的来源复杂, 其丰度高于深海沉积物中微塑料的丰度[29-30]。Juan等[31]发现大西洋沿岸加那利群岛某些区域的海岸沉积物中微塑料丰度大于100 g·L–1, 而Cauwenberghe等[32]对采自大西洋和地中海11个站位的深海沉积物进行微塑料分离, 平均丰度仅为0.5个·25 cm–3。如果将沉积物的单位都换算为cm3, 微塑料丰度也存在数量级的差异。

受人类活动影响程度不同的海滩和近岸沉积物中, 微塑料的丰度也存在较大差异[33]。葡萄牙沿岸沉积物中的微塑料丰度范围为1.5~362个·m–2, 港口及工业区附近海滩沉积物中的微塑料丰度明显更高[34]。黄渤海沿岸的微塑料丰度变化范围也较大(1.3~ 14 712.5个·kg–1), 且未开发海滩(缺乏管理) > 旅游海滩 > 渔港附近海滩[35]。此外, 季风、洋流等也会影响微塑料在海滩和近岸沉积物中分布。因季风和洋流的影响, 韩国苏爷岛(soya)海滩不同区域沉积物中的微塑料丰度差异高达100倍, 其中南岸海滩的微塑料丰度相对较高[36]。

1.1.2 远洋微塑料污染

远洋海域存在大量的微塑料, 据探险科学组织报道称, 南极半岛海水样品中的微塑料平均丰度为22个·L–1, 最大浓度高达117个·L –1[37]。与近岸相比, 远海水体中微塑料的丰度与洋流、波浪、风力湍流等关系更为密切。其中, 海洋环流在微塑料的运输和积累方面可发挥重要作用, 对北太平洋副热带环流和南太平洋环流的研究表明, 微塑料的丰度分别为334 271和26 898个·km–2[38-39]。Cózar等[40]发现开放式海域大部分的微塑料主要积聚在5个副热带环流的辐合带。在夏威夷与加利福尼亚之间的海域中, 微塑料丰度高达6.8×105个·km–2[41]。在大西洋上升流和非上升流区域, 受上升流影响, 微塑料丰度较低且没有显著性差异[42]。

远海微塑料丰度相对近岸海水较低。西北太平洋沿同一维度从西向东微塑料丰度呈递减趋势, 从1.5×104个·km–2递减到6.6×102个·km–2[43]。塑料生产量、消费量的激增导致远海微塑料积累量越来越多, 远海海水样品微塑料的丰度随着取样时间的推移而增大。研究者对同一海域的样品进行分析, 2018年微塑料平均丰度相对2017年增长5.2×104个·km–2[43-44]。尽管远海微塑料的丰度存在空间异质性, 但是海水中微塑料检出率也有随时间推移而增加的趋势[45]。20世纪70年代, 在东北太平洋约64%的调查地点(21个)发现了塑料碎片[46]。然而, 最近两次巡航中的所有调查地点的微塑料检出率为100%[43-44]。

1.1.3 深海微塑料污染

探究水体和沉积物中微塑料的报道较多[47-48], 但是大多数样品来自近岸水环境。关于微塑料在深海中污染特征的研究较少, 大多集中在探究深海沉积物中微塑料的丰度[13, 32, 49]。海底被认为是海洋塑料垃圾的一个“汇”[50], 粒径接近或与其他有机物聚集形成“海洋雪”到达深海。但由于“海洋雪”的沉降速率为1~ 368 m·d–1[51], 且塑料颗粒在表面张力和海洋洋流的作用下有较长时间停留在海面和悬浮在水体中[13], 深海沉积物中的微塑料丰度相对近岸沉积物较低[52]。

早在2013年, Cauwenberghe等[32]就调查了南冰洋以及北大西洋深海(水深 > 4 000 m)沉积物中微塑料的分布, 结果表明该区域微塑料丰度较低, 为0.5~1个·25 cm–3; 同样在地中海(水深3 500 m)、太平洋(水深2 200 m)、印度洋(水深1 000 m)深海沉积物中也检测到较低的微塑料丰度, 分别为10~35个·50 mL–1、6~40个·50 mL–1和1.5~3.5个·50 mL–1[13, 49]。极地哈斯加藤天文台附近的深海(水深5 570 m)垃圾在2002年到2014年期间不断增加[53], 2015年采集的沉积物样品中微塑料丰度最高可达6 595个·kg–1。有研究认为较高的微塑料来源于海冰的溶化[54]。此外, 也有少数研究探索了深海水体中的微塑料丰度。例如, Courtene-Jones等[55]在大西洋东北部的罗卡尔海槽深海(水深2 227 m)水体中检测到微塑料的浓度为70.8个·m–3。

深海微塑料的粒径普遍较小。在南极海深海沉积物中的微塑料有65%粒径小于1 mm[32], 西北太平洋千岛海沟深海(水深5 766 m)沉积物中微塑料粒径均小于1 mm[49]。大多数深海生物直接或间接地以海洋有机碎屑为食[56], 容易摄入粒径接近“海洋雪”的微塑料。Taylor等[56]在大西洋、印度洋海域包括刺胞动物、棘皮动物和节肢动物等在内的深海底栖无脊椎动物体内分离出微塑料; 大西洋洛克尔海槽底栖无脊椎动物海蛇尾Ophiomusium lymani、海星Hymenaster pellucidus和峨螺Colus jeffreysianus体内也发现了微塑料, 检出率为48%[55]。然而, 大规模调查深海微塑料污染的研究较少, 微塑料对底栖生物的生态风险也需要深入研究。

综上所述, 微塑料广泛分布于世界各海域中[57-58], 且具有空间异质性, 其差异大小取决于人类活动强度、海岸开发程度、水动力学、河流排水和航运交通等因素[59]。另外, 取样方法可能影响结果的准确性, 导致某些观测值存在偏差, 例如, 有研究表明利用拖网收集海洋表层水体中的微塑料时, 网目的大小和微塑料的丰度值也存在负相关[60], 使用网目较大的浮游生物网可能会低估水体中微塑料的丰度; 也有研究认为网目大小和微塑料的丰度值之间缺乏相关性, 例如南大西洋中的公海或南非开普省附近的沿海水域[61-62]。此外, 描述微塑料丰度的单位很多, 导致不同研究之间的结果难以比较。整体而言, 海岸沉积物的微塑料丰度总体上高于深海沉积物; 近岸水域微塑料来源较多、海陆环境之间存在复杂的相互作用, 微塑料丰度的异质性更高; 远海和深海中微塑料的丰度较低, 且前者大于后者。

1.2 海洋中微塑料的特征

由于来源的多样性, 海洋中微塑料的种类繁多, 有不同的密度、粒径、形状和颜色。微塑料的特征会影响其在海洋中的分布和生态效应。例如, 粒径较小或颜色与浮游生物相近的微塑料易被海洋生物摄入[63], 密度则直接影响微塑料的分布。

1.2.1 海洋中微塑料的粒径

微塑料的最大粒径为5 mm[9], 最小粒径因采样和实验处理方法不同而存在较大差异(如图 2)。目前多采用浮选法分离沉积物中的微塑料[22], 检测出的微塑料的最小粒径与使用的筛孔和滤膜的孔径大小相关。除少数研究使用采水器外, 通常使用浮游生物网或bongo网采集海水中的微塑料[2, 60]。海水中微塑料的最小尺寸因拖网使用的网目不同在1~500 μm范围内变化, 333 μm为最常见[64]。通过筛分和测量可以将微塑料的尺寸分类, 用以分析微塑料粒径的频数分布。与沉积物中微塑料的粒径相比, 海水中微塑料的粒径频数分布较离散。

图 2 海洋环境中微塑料的粒径范围 Fig. 2 Size range of the microplastics in the marine environment 图选项 1.2.2 海洋中微塑料的颜色

微塑料的颜色可以分为白色、无色透明、黄色、黑色、蓝色等, 透明微塑料在海洋环境中最为常见。在微塑料研究中, 通常通过镜检进行分离, 镜检过程中有色微塑料容易辨别, 而透明和白色等较浅颜色的微塑料却易被忽略, 因而环境中的透明或白色微塑料数量可能被低估[60]。

微塑料的颜色分类可以为后期溯源提供线索。有研究认为透明微塑料主要来源于一次性塑料制品, 如塑料袋[65], 而蓝色微塑料被认为与研究区域的渔业活动(渔具损坏等)有关[66]。但塑料碎片的风化以及在海洋中停留的时间长短都会影响微塑料的颜色, 许多有色塑料可能在进入海洋后逐渐褪去颜色[67]。因此, 颜色仅可用作微塑料来源的初步判断, 准确鉴定尚需借助其他手段。

此外, 调查发现水生生物对微塑料的摄食也受到其颜色的影响。栖息在沉积物中的水生动物倾向于摄食有色微塑料[68], 一些鱼类的幼鱼则会摄取更多的与浮游生物颜色相近的微塑料[63, 69]。

1.2.3 海洋中微塑料的形状

海水、沉积物样品和海洋生物体内均发现了不同形状的微塑料[70-71], 主要包括纤维、球形、薄膜以及泡沫微塑料等。纤维微塑料在海洋中最为常见, 在部分研究区域内的丰度在90%以上[72]。

微塑料的形状与塑料碎片在海洋中停留的时间长短和降解过程有关, 并间接影响微塑料在海洋中的分布。大粒径塑料碎片的形状不规则, 而老化微塑料的边缘较光滑[73]。Zhang等[28]研究认为塑料纤维和薄膜比塑料微球的浮力更大、沉降速度更低。微塑料的形状还可用于分析微塑料的潜在来源。例如, 纤维微塑料主要源于洗涤和渔业活动[74], 微塑料薄膜被认为源自一次性塑料袋或农用薄膜[75], 而球形微塑料主要为清洁类化妆品或工业原料中的塑料颗粒。

2 微塑料对海洋生物的生态效应

微塑料一旦进入水生生态系统后, 由于聚合物形状、粒径和密度的不同, 能够广泛地分布在淡水、海水以及沉积物中[76], 从而对不同生境或营养级的生物产生影响[77]。密度较低的塑料碎片在浮力和海水表面张力的作用下聚集在海洋微表层中[78], 影响藻类的光合作用以及浮游动物的行为、摄食和排粪[79-80]。粒径、形状等特征则决定了微塑料在生物体内的滞留时间以及产生的损伤程度[81-84]。

近年来, 有关微塑料对水生生物毒性效应的室内研究快速增加。据报道, 超过690种水生动物摄入了塑料或微塑料[85]。小粒径微塑料可穿过细胞膜直接进入小型浮游植物体内, 对其光合作用等产生影响; 水生生物直接或间接摄入的微塑料颗粒不仅会对生物机体造成机械损伤和应激反应[86], 还可能为某些有害物质(包括塑料添加剂、从周围环境吸收的污染物和病原微生物)进入水生食物网提供载体作用[14]。此外, 微塑料会随着食物链由低营养级向高营养级传递, 对人类食品安全带来潜在威胁[87]。

2.1 微塑料对海洋初级生产者的毒性效应

到目前为止, 关于微塑料对海洋初级生产者生态毒理学影响的研究仅限于浮游植物中的微藻, 且大多集中于浮游植物暴露于微塑料后的生长动态。

浮游植物在海洋生态系统中扮演着重要角色。微塑料与微藻之间存在吸附作用[88], 可能会抑制藻细胞的生长[89]、降低藻类的光合效率等[88], 这种吸附作用取决于微塑料的粒径。粒径较大的微塑料可能成为微藻附着、生长的载体[90], 而小粒径微塑料可以吸附在微塑料表面, 对藻体与环境之间能量和物质的转移产生影响。研究表明, 0.05 μm的微塑料暴露能够抑制杜氏盐藻(Dunaliella salina)的生长, 但粒径为6 μm的微塑料对杜氏盐藻的生长无显著影响[67]。Canniff和Hoang[90]发现粒径为63~75 μm的微塑料暴露组月牙藻(Selenastrum capricornutum)的浓度增加了56%, 其原因可能是粒径较大的微塑料为月牙藻(Selenastrum capricornutum)的生长提供了附着基。

小粒径微塑料可以对微藻的生长、光合作用产生影响[91], 且存在浓度依赖效应。Zhang等[92]发现1 μm PVC微球可以包裹在中肋骨条藻(Skeletonema costatum)表面, 对微藻的生长和光合作用产生了抑制, 其叶绿素含量和光合效率均显著降低, 96 h后最大生长抑制率(IR)达39.7%。聚苯乙烯微塑料对蛋白核小球藻(Chlorella pyrenoidesa)的生长、光合作用具有剂量效应的负面影响, 同研究还发现微塑料会造成类囊体变形和细胞膜受损等现象[93]。

此外, 微塑料还可以影响微藻在水体中的分布。角毛藻(Chaetoceros neogracile)可以通过释放胞外黏性多糖与微塑料形成异聚体[94], 导致黏附在瓶壁上的异聚体随时间增加而增多。Bhattacharya等[88]发现微塑料可以附着在栅藻(Scenedesmus quadricauda)鞭毛上, 干扰微藻的运动、分布。值得注意的是, 微塑料还可能作为有毒微藻的载体, 对人类和动物的健康产生潜在影响[88]。

2.2 微塑料对海洋动物的影响 2.2.1 生长发育

一旦微塑料进入水生生物体内, 在消化系统中的积累会直接影响生物的摄食和生长发育[95]。摄入的微塑料可能积聚在水生动物的消化道中, 甚至堵塞消化道, 从而产生虚假的饱腹感, 导致摄食率下降[96]。Bour等[97]观察到暴露于微塑料(125~500 μm)中的双壳贝类(Ennucula tenuis)体内总能量储备随着微塑料浓度的增加而降低。海洋桡足类(Tigriopus japonicus)在滤食含尼龙–6(5~20 μm)的藻液后, 摄食率和滤水率均降低, 且存在剂量-效应关系[80]。摄食率的持续降低可能对水生生物产生各种有害影响, 例如体重减轻、生长抑制等。鱼类摄食微塑料还可能导致肠道环境恶化, 对其营养吸收和生长造成影响[98]。

2.2.2 行为特征

行为特征是反映生物健康程度的重要因素[99], 然而微塑料对海洋生物行为影响的相关报道较少。微塑料可能对生物的集群、游泳、捕食和勘探等行为有负面影响。将许氏平鲈(Sebastes schlegelii)暴露于含聚苯乙烯微球(15 μm)的水体中14 d, 其游泳速度下降、捕食勘探范围变小而产生了集群行为[100]。微塑料还可附着在甲壳类浮游动物的触角、附肢等部位, 对其游泳速度产生影响[83-84]。对紫贻贝[101]、牡蛎[102]等进行微塑料暴露实验也有类似的结果——微塑料对摄食和游泳行为产生了影响。微塑料除削弱动物的原有行为能力外, 还会使其产生异常行为。例如, 汤氏纺锤水蚤(Acartia tonsa)幼体暴露在塑料微球后, 游泳时出现“跳跃”行为[103]。

2.2.3 生殖

微塑料可对生物的生殖产生干扰, 导致生殖细胞数量减少或质量降低。对于体外受精的海洋生物, 其配子质量可能会直接受到水体中微塑料的影响。González-Fernández等[104]发现含羧基的微塑料可增加长牡蛎(Crassostrea gigas)精细胞内的活性氧。也有研究发现聚苯乙烯微塑料对雄性牡蛎的生殖细胞产生了负面影响, 使其运动水平下降[102]。

微塑料对生物繁殖的影响与微塑料的剂量和成分有关。将微塑料(0.05 μm)设置梯度浓度(0.1、1、10、25 μg·mL–1)对长牡蛎的生殖细胞和受精卵进行暴露实验, 发现25 μg·mL–1的微塑料致使受精率、孵化率严重下降(19.6%、76.4%); 同研究表明在浓度为1、10、25 μg·mL–1时, 含氨基成分的微塑料(NH2-50 nm)对胚胎形成的抑制率为100%[105]。

此外, 微塑料可能通过干扰生物的能量收支, 对生物的繁殖造成损害[102]。微塑料使珍珠贝(Pinctada margaritifera)能量摄入降低, 但是代谢率并未降低, 弥补能量收支平衡的方式为减少用以繁殖的能量支出[106]。

2.2.4 免疫系统

微塑料污染可以使海洋生物产生一系列的应激反应, 干扰生物的免疫防御系统。由于更容易嵌入生物组织[82]、停留的时间更长, 纤维微塑料对斑马鱼(Danio rerio)肠道造成的毒性更强, 包括黏膜损伤、通透性增加和炎症等, 破坏其肠黏膜的免疫屏障[83]。高浓度(9.0×1010个·L–1)聚苯乙烯微塑料暴露能够激活造礁石珊瑚(Pocillopora damicornis)的应激反应, 并通过c-Jun氨基末端激酶(JNK)和细胞外调节蛋白激酶(ERK)信号通路抑制其免疫系统[107]。海胆(Paracentrotus lividus)体腔液中添加氨基聚苯乙烯(PS-NH2, 10~25 g·mL–1)颗粒, 可使得吞噬细胞的溶酶体膜的不稳定性增加,引起细胞凋亡[108]。海洋生物接触特定浓度的微塑料可能会在短时期内产生免疫反应, 但一段时间后机体会产生适应机制。用高密度聚乙烯(HDPE)微塑料混合糠虾对海马(Hippocampus kuda)进行了为期45 d的喂养实验, 仅在实验早期(0~15 d)发现海马体内超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性的增加, 但很快又恢复了正常水平[109]。首次暴露于HDPE微塑料中, 贻贝(Mytilus galloprovincialis)体内的免疫和应激反应相关基因出现了差异性表达, 第2次暴露实验后消化腺中免疫和应激相关基因的表达量降低, 推测贻贝产生了适应机制[110]。

2.2.5 基因表达与遗传

微塑料可通过影响相关基因的表达而干扰生物的内环境稳定。长牡蛎(C. gigas)滤食微塑料后, 胰岛素信号通路相关基因表达下调, 对生殖细胞增殖和成熟产生负面影响[102]。在海洋环境中放置3个月的微塑料(PE)暴露日本青鳉(Oryzias latipes)2个月, 对雌激素受体(ERa)介导的基因表达产生影响, 使卵壳前体蛋白H的表达量显著降低[111]。

生物体摄入和积累微塑料可能会产生遗传毒性。滕瑶[112]研究发现, 微塑料的存在可以使十溴代联苯醚对栉孔扇贝细胞造成的DNA损伤程度由轻度提高至中度, 对扇贝产生遗传毒性。高浓度以及小粒径的聚苯乙烯微塑料使日本虎斑猛水蚤(Tigriopus japonicus)的F1代存活率显著下降[113]。浮游动物大型蚤(Daphnia magna)在聚苯乙烯微塑料暴露21 d后, 其后代的体型变小, 且畸形率高达68%[91]。

3 微塑料的载体作用

作为聚合物、残余单体和化学添加剂组成的复杂混合物, 微塑料具有比表面积大、疏水性高的特征, 可吸附重金属或抗生素等化学污染物[114], 还可以成为细菌等微生物生长的载体[115]。此外, 为了提高使用性能, 在塑料制作过程中通常还加入一些添加剂, 例如烷基酚、双酚A、多溴联苯醚和邻苯二甲酸酯[11], 它们也会随着微塑料进入海洋环境中。微塑料携带污染物随海水运动进入海洋的每个角落, 在生物体内富集并沿着食物链进一步传递, 对海洋生态系统的稳定与健康产生影响[116]。

3.1 微塑料作为微生物的载体

作为微塑料污染相关的问题之一, 海洋中微塑料与微生物之间的生态相互作用逐渐引起人们的关注[117-118]。微生物通过生物膜的形式在微塑料表面进行附着、增殖[119], 最终形成生物群落。微塑料的存在不仅减弱了环境因素改变对细菌群落的影响, 还可以作为细菌在海水与沉积物之间积累、迁移的载体[120], 使生物群落在海水运动作用下进行长距离输送或因改变微塑料的浮力而一起汇集到沉积物中[121-122]。

微塑料表层形成的生物膜中, 微生物的群落结构和多样性与环境中不同[121]。Wu等[120]对渤海湾沉积物、水体中以及微塑料附着的细菌群落进行分析, 发现微塑料选择性富集了某些细菌(例如盐杆菌科和假交替单胞菌科), 其中潜在致病菌(假单胞菌和芽孢杆菌)的丰度明显高于周围环境。将微塑料置于环境中培养生物膜, 与天然基质相比, 微塑料不仅可以改变微生物群落结构, 还可以影响微生物的生态功能[123]。Sun等[124]也发现微塑料可抑制海水嗜碱盐单胞菌的生长, 对海洋氮循环有潜在影响。有研究表明弧菌和假单胞菌是微塑料表面上的优势菌[117], 对海洋生物均存在致病性, 前者是导致珊瑚白化的主要病原体[118]。

当微塑料吸附病原微生物[125-126]或当外来物种通过微塑料运输而转移到新环境中时[121], 可能会引起生态问题。Zhang等[127]调查了工厂化养殖水体中微塑料对抗生素耐药菌(ARB)的富集作用, 微塑料中可培养ARB的多样性和丰度均高于水样, 微塑料表层多重抗生素耐药细菌中检测到更多的抗生素抗性基因(ARG)。研究人员对珊瑚礁生态区水体中微塑料表面生物膜进行分析发现, 附着的优势细菌中包括与珊瑚组织损伤密切相关的弧菌(Vibrionaceae)、红细菌(Rhodobacteraceae)和黄杆菌(Flavobacteraceae)[118]。

生物膜的形成可以降低微塑料的疏水性, 增加微塑料表面亲水基团的丰度, 促进金属离子、抗生素等物质在微塑料表面的吸附[128]。将聚乙烯(PE)置于海水中, 微塑料表面生物膜的亲水性、C-O和C=O基团的丰度随着时间的推移而增加[129]。Wang等[130]研究表明, 生物膜可以通过改变微塑料的吸附性能促进Cu2+和四环素(TC)的吸附和稳定。与相对裸露的微塑料表面相比, 含生物膜的微塑料(HDPE和PP)表面硅、铝含量更高, 并且可以为放射性核素提供环境“汇”[131]。

此外, 生物膜的形成对水中的微塑料分布具有重要意义。黏附在微塑料表面的微生物可以保护微塑料免受紫外线辐射而间接延长塑料颗粒的寿命[132]。McCormick等[133]的研究表明, 微塑料可以作为降解碳氢化合物微生物的附着基, 从而提高微塑料的降解速率。生物膜还可以增加微塑料密度从而改变微塑料在海水中的分布, 导致其下沉, 最终到达沉积物中[134]。

3.2 微塑料作为其他污染物的载体 3.2.1 重金属

目前, 有关微塑料与金属相互作用的研究主要涉及微塑料对金属离子的吸附机理以及影响微塑料对金属离子吸附效应的因素, 包括微塑料类型、微塑料浓度、pH、接触时间、温度和作用介质等[135-137]; 仅有少数研究对环境中微塑料吸附的金属含量与环境中、生物体内金属含量的相关性进行了探讨[138-139]。

金属离子能够直接吸附到微塑料表面[140]。相对于原生微塑料, 次级微塑料表面更易吸附金属离子[141]。光照、温度等因素也可以改变微塑料的比表面积以及表面的含氧基团数量[142], 增强微塑料对金属离子的吸附能力。Wang等[143]使用紫外线辐射聚对苯二甲酸乙二酯(PET)模拟环境中微塑料的光老化, 结果发现老化微塑料对重金属(Cu2+和Zn2+)的吸附能力高于未经紫外处理的微塑料, 且随着辐射时间的延长而增强。芬顿试剂处理导致聚苯乙烯微塑料的比表面积、表面羰基和羧基数量增加, 对Cd2+的吸附能力增强[144]。除吸附在微塑料表面, 金属还可以作为塑料制品的添加剂, 例如镉(Cd)、锌(Zn)[145], 以及用作聚氯乙烯(PVC)热稳定剂的铅(Pb)[146]。

结合在微塑料表面或作为添加剂的金属很容易解吸附或浸出[137-146], 因此, 微塑料不仅对重金属具有载体功能, 还可能提高金属污染物的生物利用度, 对生物健康产生影响。Martin和Turner[147]发现在模拟无脊椎动物体内消化环境的化学条件下, 微塑料作为载体会增加Cd的生物利用度, Cd总量为1 000 μg·g–1的微塑料所含生物可利用的金属比沉积物多3 200倍左右。体外模拟探究吸附在5种微塑料表面的重金属在人体消化系统中的释放过程, 结果表明聚乳酸(PLA)微塑料中Cr4+的生物利用度在胃中最高, 为19.9%, 原因可能为PLA在消化酶和胃酸中易降解, 从而使PLA表面的Cr4+的释放速率提高[137]。单独使用微塑料或汞暴露欧洲鲈鱼(Dicentrarchus labrax), 幼鱼的游泳速度和运动耐受时间显著降低, 而微塑料和汞混合暴露会加剧对幼鱼游泳能力的影响[148]。Wang等[149]发现, 相对于微塑料或重金属(Cd、Zn、Pb)单一因子的作用, 微塑料和重金属的混合物可以更显著地改变海水青鳉(Oryzias melastigma)肠道微生物的多样性。此外, Imran等[150]的研究表明, 当携带金属离子的微塑料沿食物链进入人体后, 已经存在于人体肠道中的致病菌会接触其表面的金属, 可能会进一步引起金属驱动的多重耐药性人类病原体的产生。

3.2.2 添加剂及有机化学污染物

除金属外, 调查研究发现环境中微塑料还可以吸附多环芳烃(PAHs)、有机氯农药(OCPs)、有机卤化物、邻苯二甲酸酯(PAEs)和有机磷酯类(OPEs)等化学污染物[114, 151-155]。海洋环境中微塑料携带的化学污染物可以分为两类: 内源化学添加剂和外源吸附的化学污染物[155]。Mato等[156]从日本4个海岸收集的聚丙烯(PP)树脂球中检测出多氯联苯(PCBs)、二氯二苯二氯乙烯(DDE)和壬基酚(NP), 室内实验发现原生PP颗粒吸附的PCBs和DDE浓度有显著、稳定的增加且是海水中105~106倍; NP浓度却发生显著变化, 表明野外微塑料的PCBs和DDE来源于海水中的疏水性有机污染物, 而NP可能来源于添加剂。

目前实地调查环境中微塑料携带化学污染物特性的研究较少[154], 调查方法的局限性导致难以区分内源添加剂和外源吸附化学污染物[157]。塑料加工过程中, 通常添加增塑剂、阻燃剂、稳定剂、抗氧化剂和色素等添加剂,以此来改善成型性能和制品的使用性能[158]。添加剂通常不与聚合物形成共价键, 因此, 它们容易从塑料中浸出并进入周围环境中, 例如通过氢键或范德华力与聚合物结合的邻苯二甲酸酯(PAEs)[159]。微塑料释放的添加剂可对海洋生物产生影响[160]。Browne等[161]利用添加剂(三氯生)对微塑料进行预处理, 将海蚯蚓(Arenicola marina)暴露在含有微塑料的沙子中, 结果发现海蚯蚓对沉积物的扰动能力降低, 死亡率超过55%。常作为增塑剂的邻苯二甲酸二丁酯(DBP)和微塑料暴露能够影响微藻细胞大小和叶绿素荧光强度, 导致藻细胞产生质壁分离等结构异常[162]。因此, 在探究微塑料对添加剂吸附和释放的动力学基础上, 需深入了解微塑料结合添加剂对海洋生物的影响。

外源吸附有机化学污染物主要来源于工业、农业和生活, 例如工业生产使用的多溴联苯醚[163]、抗生素以及防晒霜中的氧苄酮[164-165]。目前有关微塑料对不同有机化学污染物吸附动力学的研究较多[136, 166]。影响有机化学污染物吸附和释放的因素较多, 包括微塑料类型、性质、粒径和海洋环境条件等[167-170]。例如在海水中, 聚乙烯(PE)、聚苯乙烯(PS)和聚氯乙烯(PVC)三种材料的微塑料中, 密度最小的聚乙烯(PE)对四环素的吸附容量最大[171]。Ma等[172]研究表明微塑料的表面特征和结晶程度影响污染物在不同密度微塑料中的扩散系数, 从而影响其对污染物的吸附容量。但Li等[173]对比微塑料在淡水与海水中的吸附行为发现, 相对于低密度的聚乙烯(PE), 密度较高的聚酰胺(PA)在淡水生态系统中对抗生素的吸附能力反而最强。因此, 密度是影响微塑料吸附有机污染物的重要因素, 但也与反应条件有关。

微塑料携带的化学污染物具有在生物体内解吸附的能力[151]。模拟海鸟消化系统的化学条件下, 在胃和肝中检测出微塑料浸出的大量多溴联苯醚[174]。海洋青鳉(Oryzias melastigma)的胚胎和幼体接触含3种污染物的微塑料后, 含全氟辛基磺酸的微塑料(MP-PFOS)会降低胚胎存活率并阻止孵化; 含苯并芘(MP-BaP)或苯并酮(MP-BP3)的微塑料使幼体生长发育和行为异常[175]。持久性有机污染物(POPs)可以通过食物链从微塑料进入卤虫无节幼体, 进而转移到斑马鱼体内[176]。因此, 了解有机化学污染物与微塑料相互作用对生物的影响是评估其对海洋生态系统潜在风险的基础。

总而言之, 漂浮在表层海水中密度较低的微塑料能够吸附化学污染物或形成生物膜, 可以进入浮游生物体内[177]; 聚苯乙烯(PS)等微塑料具有比海水更高的密度, 可以携带化学污染物或微生物沉入水底, 进入底栖生物体内。此外, 微塑料作为载体可使化学污染物或微生物沿着食物链转移, 并可能会影响人类健康。因此, 需要在了解微塑料在海洋环境中分布特征的基础上, 探究微塑料携带的化学污染物的浓度和来源, 评估微塑料与化学污染物、微生物相互作用对海洋生物的影响, 维持海洋生态系统的健康与稳定。

4 展望

微塑料广泛分布在海洋生物栖息的每个角落。迄今为止, 微塑料的研究主要集中在环境中的微塑料污染特征以及生物摄入的有害影响, 其影响程度与微塑料的类型、浓度以及生物的大小有关; 也有部分学者探究了微塑料和其他典型污染物的吸附机理和联合毒性作用。大多数微塑料毒性效应的研究都是在室内条件下进行的, 可能与现实环境的相关性较小。此外, 关于作为载体的微塑料与海洋初级生产者、微生物相互作用的研究,以及食用体内积聚微塑料的水产品对人类健康影响的研究目前都较少。因此, 可进一步探究微塑料对海洋初级生产者的影响及其影响机制, 通过同位素示踪、分子生物学等技术全面的评估微塑料在食物链中的传递效应以及对高营养级消费者的生态毒理作用, 还可利用体外模拟实验更详细地了解到微塑料对人体的潜在影响, 以及分析已有海洋水体、生物、沉积物中微塑料丰度的数据, 对微塑料丰度的未来变化进行预测。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3