地质高背景土壤重金属赋存特征及微生物群落结构差异

您所在的位置:网站首页 土壤地质结构 地质高背景土壤重金属赋存特征及微生物群落结构差异

地质高背景土壤重金属赋存特征及微生物群落结构差异

2024-07-10 08:50| 来源: 网络整理| 查看: 265

我国农田受重金属污染严重,其来源包括人为源,如采矿、肥料与农药施用、污水灌溉等,以及自然源,即自然成土过程中的地质内源影响[1]。由地质背景因素造成的土壤重金属含量偏高,称为地质高背景(High geological background,HGB)土壤,如铬(Cr)与镍(Ni)在基性岩和超基性岩发育形成的土壤中含量偏高[2]。我国地质高背景农田土壤重金属超标率高、成因复杂且面积广,主要分布于西南、华南、两湖、成渝、珠江三角洲(珠三角)及长江三角洲(长三角)等地区[3]。不同地区土壤重金属的富集类型不同,包括残坡积型、运积型及次生富集型。成土母质的岩性、河流冲积类型以及风化侵蚀程度会影响土壤重金属的分布特征。唐豆豆等[4]分析不同母质发育的地质高背景土壤,结果表明镉(Cd)与砷(As)以黑色岩系发育的土壤中含量超标,而在碳酸盐系石灰岩发育的土壤中铅(Pb)、Cd和As含量超标。Liu等[5]发现由于水体动力学与风化侵蚀的改变,相比于以片麻岩、花岗岩为主的河流冲积物地区,高度风化的黑色页岩地区高背景土壤中Cd极易被富集。

广西是我国典型的重金属次生富集区域,地层年代及母质成分主要为石炭纪碳酸盐岩及第四纪河流沉积物,经长期风化溶蚀作用,成土母质中Pb、Cd、铜(Cu)、As等重金属元素被黏土矿物吸附,进而大量富集于土壤中[6-7]。目前关于人为源土壤中重金属的赋存状态研究较多[8-9],而对于地质背景来源的土壤重金属污染特征方面研究较少,仅有部分研究表明地质背景土壤重金属在生物有效性上有所降低,对生态系统的危害较轻[10]。

土壤微生物是土壤的重要组成部分,它一方面驱动着土壤有机质的形成、转化以及土壤养分循环等;另一方面土壤微生物的活性和群落结构变化也是衡量土壤质量的重要指标[11-12]。土壤重金属含量、赋存状态、土壤类型与植被等均会影响土壤微生物活性和群落结构[13-15],同时土壤微生物群落的变化对土壤重金属污染也有敏感的指示作用。赵立君等[16]研究发现土壤微生物群落结构对不同As胁迫有明显的响应特征,这可作为As污染土壤质量评价的灵敏指标。而这些关于重金属污染条件下微生物群落的研究,多集中于人为源重金属污染土壤的研究[17-19],对于地质高背景重金属污染土壤中微生物活性和群落结构的研究较少。

此外,我国地质高背景农田土壤成因复杂,地质年代和母质类型多样,普遍存在着重金属污染机理不清,生态风险不明的现状。因此,本研究选择典型次生富集型地质高背景区广西不同地层年代及不同母质类型的四种农田土壤,比较研究不同土壤中重金属赋存状态以及微生物活性和群落结构变化,探究地质高背景条件下影响微生物群落结构的关键因子,为次生富集型地质高背景农田土壤重金属风险评估体系提供数据支撑。

1 材料与方法 1.1 研究区概况

研究区分别位于广西省南宁江南区苏圩镇(108°1′49″E,22°30′37″N)、武鸣县锣圩镇(107°58′60″E,23°19′17″N)、横县马岭镇(109°18′55″E,22°47′2″N)和云表镇(109°17′37″E,22°55′10″N),研究区分布示意图如图 1。四个地区均属于亚热带地区,地貌类型为典型的喀斯特地貌,是分处南宁市邕江不同流域的代表性样区。调查资料显示研究区均为典型地质高背景带,锣圩地区位于南宁市邕江北部,土壤呈弱碱性,地层及母质为第四系桂平组河流沉积物,区内富含铁矿;苏圩地区位于南宁市邕江南部,土壤呈酸性,地层及母质为第四系桂平组河流沉积物,区内富含铁锰矿;马岭地区位于邕江下游横县马岭镇,土壤呈弱碱性,地层及母质为中石炭统大埔组碳酸盐岩,区内富含铁铝矿;云表地区位于横县马岭镇,处于邕江下游,土壤呈酸性,地层及母质为第四系桂平组河流沉积物,区内富含铁铝矿。

图 1 研究区分布示意图 Fig. 1 Sketch map of the study areas 1.2 供试土壤与样品采集

2018年1月底,在广西省南宁市的四个研究区选择常年种植籼稻、无发达工业影响的地质高背景农田土壤进行采样。采集水稻土壤表层样品(0~20 cm),每个研究区内随机选取三处土壤样品装入自封袋,4℃冰盒低温保存运往实验室。仔细将肉眼可见的根系、石砾和动植物残体去除后,部分鲜样测试样品保存于4℃冰箱,部分土壤样品风干过10目或磨细至100目筛用于理化指标及重金属含量分析。

1.3 土壤重金属含量及理化性质分析

土壤重金属全量采用盐酸-硝酸-高氯酸酸-氢氟酸消解,重金属有效态采用二乙烯三胺五乙酸(Diethylene triamine pentaacetic acid,DTPA)浸提[20],后用电感耦合等离子体质谱(ICP-MS,Thermo Fisher icap Q,美国)测定Pb、Cd、Cu、锌(Zn)和As的含量。分析过程中设置3组平行,以国家标准物质GSS-4控制测定质量,样品回收率在95%以上。

采用pH计(雷磁PHS-3C型,上海)测定土壤pH,水土比2.5︰1;重铬酸钾容量法(外加热法)测定土壤有机质含量;土壤全氮采用半微量凯氏法、全磷采用高氯酸-硫酸法参考《土壤农业化学分析方法》[21];使用NH4OAc浸提-火焰光度计(菲乐勒FL-6480,南京)测定速效钾含量;${\rm{NO}}_{\rm{3}}^ - $-N和${\rm{NH}}_{\rm{4}}^{\rm{ + }}$-N采用KCl浸提,使用流动分析仪(Seal- AutoAnalyzer3,德国)测定。

1.4 土壤微生物功能多样性分析

采用Biolog-ECO微平板法进行微生物功能多样性分析[22-23]。称取5 g新鲜土样置于高压灭菌的锥形瓶中,加入0.85%的无菌生理盐水,封口振荡30 min,将土壤菌悬液用无菌生理盐水进行2次10倍稀释。然后取150 μL稀释液接种至ECO平板中,加盖置于37℃恒温培养箱中连续培养168 h,每隔24 h用美国GEN Ⅲ MicroStation Biolog仪在590 nm和750 nm下对其吸光值进行测定。

每孔颜色平均变化率,AWCD(Average Well Color Development):Biolog-ECO微平板的每孔平均吸光值,表示土壤微生物群落碳源利用的整体能力,计算公式如下[24]:

$ \mathrm{AWCD}=\sum\left(C_{i}-R\right) / n $ (1)

式中,Ci为每个有培养基孔的光密度值,R为对照孔的光密度值,n为碳源的数目,Biolog生态板的碳源数目为31。

群落多样性可由土壤微生物群落利用碳源类型的差异来体现,计算公式如下:

香农指数H反映土壤微生物群落物种变化度和差异度,指数值越大,表示微生物物种丰富度越高。

$ H=-\sum P_{i}\left(\ln P_{i}\right) $ (2)

式中,Pi为第i孔相对吸光值与整板平均相对吸光值总和的比,即:

$ P_{i}=\left(C_{i}-R\right) / \sum\left(C_{i}-R\right) $ (3)

优势度指数D常用于评估某些常见物种的优势度。

$ D=\mathit{1}-\sum P_{i}^\mathit{2} $ (4)

丰富度指数S=碳源代谢孔的总数目(微孔的光密度值大于等于0.25,则认为该孔碳源被利用,即为碳源代谢孔)。

均匀度指数E是基于物种数量反映群落种类多样性,群落中生物种类增多代表群落的复杂程度增高。

$ E=H / H_{\max }=H / \ln S $ (5)

式中,H(香浓指数)为实际观察的物种多样性指数,Hmax为最大的物种多样性指数,Hmax=lnS(S为群落中的总物种数)

1.5 数据处理

实验所得数据均录入Excel2016并进行初步整理,采用Origin2017、Canoco5.0进行图形处理,采用SPSS22.0软件对数据进行初级分析,采用单因素方差分析并用最小显著差异法(LSD)进行显著性检;通过冗余分析(RDA)对不同地质高背景土壤微生物群落碳源代谢多样性进行分析。

2 结果 2.1 不同地质高背景土壤的基本性质差异

四种土壤中,苏圩与云表土壤呈弱酸性,锣圩与马岭土壤呈弱碱性(表 1)。马岭土壤有机质含量及全氮、全磷显著高于其他土壤,而速效钾含量显著低于其他土壤。锣圩土壤铵态氮和硝态氮含量均显著高于其他土壤。苏圩、锣圩、云表土壤质地黏重,而马岭土壤质地较疏松,富含大量铁锰结核。

表 1 Table 1 表 1 不同地质高背景土壤基本性状 Table 1 Basic properties of the soil high in geological background value relative to sampling site 采样点Sampling point pH SOM/(g·kg–1) TN/(g·kg–1) TP/(g·kg–1) AK/(mg·kg–1) AN/(mg·kg–1) NN/(mg·kg–1) 苏圩① 5.83±0.03c 28.81±1.38c 1.55±0.02c 0.88±0.05b 132.33±0.67a 1.65±0.05c 4.57±0.41b 锣圩② 7.59± 0.01b 22.29±1.67c 1.55±0.00c 0.57±0.24b 109.33±2.40b 2.47±0.24a 5.77±0.18a 马岭③ 7.77±0.04a 76.77±3.70a 3.78±0.00a 1.48±0.11a 57.00±3.00c 2.11±0.11b 3.79±0.14c 云表④ 5.87±0.01c 57.61±2.70b 1.61±0.01b 1.01±0.06b 126.00±1.15a 1.59±0.16c 4.59±0.06b 注:同一列中不同字母表示结果差异显著(P < 0.05)。SOM、TN、TP、AK、AN、NN分别代表:土壤有机质、全氮、全磷、速效钾、铵态氮、硝态氮含量。下同。Note:The different letters in the same column indicate significant difference between soils(P < 0.05). SOM,TN,TP,AK,AN and NN stands for soil organic matter,total nitrogen,total phosphorus,available potassium,ammonium nitrogen and nitrate nitrogen,respectively. ①Suxu,②Luoxu,③Maling,④Yunbiao. The same blow. 表 1 不同地质高背景土壤基本性状 Table 1 Basic properties of the soil high in geological background value relative to sampling site 2.2 不同地质高背景土壤中重金属全量、有效态含量差异

不同地质高背景土壤重金属含量特征及有效性具有较大差异(表 2)。苏圩与云表土壤As含量最高,其次为Zn。锣圩和马岭土壤Zn含量最高。苏圩土壤Pb含量为(18.53±3.17)mg·kg–1,显著高于其他土壤(P < 0.05),云表土壤Pb含量最低,仅为(4.78±0.11)mg·kg–1;有效态Pb含量在苏圩土壤中最高,而在锣圩土壤中最低。马岭和苏圩土壤Cd含量超标,分别为(1.35±0.07)mg·kg–1和(0.53±0.02)mg·kg–1。马岭土壤Cd含量显著高于其他土壤(P < 0.05),云表土壤Cd含量最低,为(0.19±0.01)mg·kg–1;有效态Cd含量在马岭土壤最高,而在锣圩土壤中最低。四种土壤的Cu元素含量均较低,未超过风险筛选值,马岭土壤含量最高,云表土壤含量最低。Zn元素含量表现出与Cu相似的特征。与其他重金属元素不同,其他元素含量较高的马岭土壤的As含量显著低于其他土壤,苏圩土壤中全量及有效态As含量最高。

表 2 Table 2 表 2 不同地质高背景土壤重金属全量及有效态含量 Table 2 Total and available contents of heavy metals in the soil high in geological background value relative to sampling point/(mg·kg–1) 采样点Sampling point 全量 Total Pb Cd Cu Zn As 苏圩① 18.53±3.17a 0.53±0.02b 16.5±0.94b 92.07±4.38b 148.36±5.13a 锣圩② 7.54±0.60bc 0.36±0.02c 12.61±1.20c 72.71±5.91c 115.52±6.49ab 马岭③ 11.07±1.18b 1.35±0.07a 22.55±2.33a 177.92±6.93a 89.04±10.38b 云表④ 4.78±0.11c 0.19±0.01d 10.28±0.54c 20.66±5.96d 130.57±15.52a 采样点Sampling point 有效态含量 Available content Pb Cd Cu Zn As 苏圩① 0.86±0.01a 0.24±0.00b 1.56±0.04a 1.70±0.02b 0.19±0.00a 锣圩② 0.15±0.01d 0.05±0.00c 1.06±0.02b 0.71±0.01d 0.05±0.00d 马岭③ 0.74±0.02b 0.27±0.00a 0.78±0.01c 2.58±0.07a 0.10±0.01c 云表④ 0.20±0.03c 0.06±0.00c 1.64±0.09a 1.42±0.06c 0.16±0.02b ①Suxu,②Luoxu,③Maling,④Yunbiao 表 2 不同地质高背景土壤重金属全量及有效态含量 Table 2 Total and available contents of heavy metals in the soil high in geological background value relative to sampling point/(mg·kg–1) 2.3 不同地质高背景土壤微生物碳源代谢活性及结构变化

如图 2所示,在培养0~24 h内,四种土壤的AWCD值变化并不明显。培养24~72 h内,四种土壤AWCD值迅速增加,其中马岭和锣圩升高最快,而苏圩增加最慢。培养96 h时,云表、锣圩与马岭的AWCD值重合,苏圩最低。96 h后,云表地区AWCD值持续升高,高于其他土壤,其次是锣圩土壤,马岭土壤AWCD值趋于平缓,苏圩土壤AWCD值依然显著低于其他土壤。

图 2 不同地质高背景土壤微生物群落每孔平均颜色变化率 Fig. 2 Average well color development(AWCD)of the soil microbial community in the soil high in geological background value relative to sampling point

72 h AWCD数据常被用来描述根际土壤微生物活性和功能的差异,量化微生物对碳源的利用特征[25](图 3)。结果表明,在云表、锣圩与马岭土壤中,利用胺类和氨基酸类碳源的微生物代谢活性高,利用糖类与多聚物类碳源的微生物代谢活性次之,利用酚酸类和羧酸类碳源的微生物代谢活性最低。而在苏圩土壤中,利用糖类和多聚物类碳源的微生物代谢活性最高。

注:同一碳源不同土壤间不同字母表示结果差异显著(P < 0.05)。CH、CA、PL、AA、PH、AM分别代表:糖类、羧酸类、多聚物类、氨基酸类、酚酸类、胺类。下同。  Note:The different letters in the same carbon source indicate significant difference between soils(P < 0.05). CH,CA,PL,AA,PH and AM stands for saccharides,carboxylic acids,polymers,amino acids,phenols and amines/amides. The same below. 图 3 不同采样点土壤微生物对六类碳源的总体利用状况 Fig. 3 Overall utilization of the six kinds of carbon sources by soil microbes relative to sampling point(72 h)

此外,不同地区微生物数量对同一碳源的利用程度不同。在苏圩土壤中,利用6类碳源的微生物数量或种类显著低于其他土壤,尤其是酚酸类和胺类碳源的微生物数量或种类,在苏圩土壤中几乎检测不到。马岭和云表土壤对糖类利用的微生物数量或种类与锣圩地区相比并无显著性差异(P > 0.05)。锣圩土壤中利用酚酸类碳源的微生物数量或种类更多,而马岭和云表土壤对酚酸类碳源利用的微生物数量或种类较少。马岭利用多聚物类碳源的微生物数量或种类较多,而锣圩和云表利用此碳源的微生物数量或种类相对较少。马岭和锣圩利用氨基酸类、胺类和酚酸类碳源的微生物数量或种类较多,显著高于在云表土壤(P < 0.05)。

分析不同土壤微生物功能多样性(表 3)发现,马岭、锣圩、云表土壤香农指数、均匀度指数、优势度指数、丰富度指数均显著高于苏圩土壤(P < 0.05)。马岭土壤丰富度指数最高;锣圩与马岭土壤均匀度指数最高。云表、锣圩与马岭这三种土壤香农指数及优势度指数相近。

表 3 Table 3 表 3 不同地质高背景土壤微生物群落功能多样性指数 Table 3 Functional diversity index of the soil microbial community in the soil high in geological background value relative to sampling point 采样点Sampling point 香农指数Shannon index(H) 丰富度指数Abundance index(S) 均匀度指数Evenness index(E) 优势度指数Simpson index(D) 苏圩① 2.46±0.12b 5.33±2.18b 2.00±0.72b 0.87±0.01b 锣圩② 2.82±0.07a 16.67±1.33a 7.00±0.36a 0.93±0.01a 马岭③ 2.82±0.07a 20.33±3.18a 6.77±1.07a 0.93±0.00a 云表④ 2.80±0.08a 15.33±0.88a 5.36±0.08a 0.92±0.00a ①Suxu,②Luoxu,③Maling,④Yunbiao. 表 3 不同地质高背景土壤微生物群落功能多样性指数 Table 3 Functional diversity index of the soil microbial community in the soil high in geological background value relative to sampling point

将重金属全量、土壤理化性质及有效态含量与不同碳代谢微生物进行相关性分析(表 4),结果显示微生物对羧酸类碳源的利用程度与pH呈显著正相关,而与土壤全砷和土壤有效态砷含量呈显著负相关。土壤对氨基酸类碳源的利用与土壤铵态氮呈显著正相关,与pH呈极显著正相关,与土壤速效钾、有效铜呈显著负相关,与全砷、有效砷呈极显著负相关。土壤对酚酸类碳源的利用与土壤铵态氮呈显著正相关,与pH呈极显著正相关,与有效铜呈显著负相关,与全砷、有效砷呈极显著负相关。土壤对胺类碳源的利用与土壤铵态氮呈显著正相关,与pH呈极显著正相关,与全铅、全砷、有效铜、有效铅呈显著负相关,与有效砷呈极显著负相关。土壤微生物对糖类和多聚物类碳源的利用与理化性质及重金属元素含量未发现显著相关性。

表 4 Table 4 表 4 不同种类碳源利用能力与重金属元素及土壤理化性质之间的相关性 Table 4 Correlation of carbon source utilization capacity with soil physical and chemical properties and heavy metal elements relative to type of the carbon source TCd TCu TPb TZn TAs ACd ACu AZn APb AAs CH 0.127 –0.127 –0.401 –0.008 –0.492 –0.273 –0.206 0.07 –0.417 –0.318 CA 0.347 0.113 –0.392 0.291 –0.608* –0.164 –0.614* 0.064 –0.331 –0.669* PL 0.38 0.308 0.148 0.397 –0.459 0.161 –0.381 0.216 0.1 –0.298 AA 0.368 0.182 –0.381 0.334 –0.756** –0.173 –0.688* 0.007 –0.389 –0.796** PH 0.342 0.147 –0.347 0.332 –0.728** –0.17 –0.659* –0.064 –0.333 –0.781** AM 0.183 –0.072 –0.686* 0.124 –0.650* –0.415 –0.631* –0.142 –0.615* –0.857** SOM pH TN TP AK AN NN CH 0.408 0.337 0.265 0.284 –0.35 0.123 0.178 CA 0.348 0.701* 0.45 0.095 –0.574 0.529 0.189 PL 0.203 0.441 0.374 0.189 –0.396 0.221 0.231 AA 0.276 0.827** 0.468 0.229 –0.669* 0.657* 0.109 PH 0.136 0.826** 0.375 –0.099 –0.567 0.662* –0.056 AM 0.269 0.768** 0.346 0.071 –0.544 0.681* –0.002 注:* 表明在0.05水平(双侧检验)上显著相关;** 表明在0.01水平(双侧检验)上显著相关。Note:Single asterisk indicates significant correlation at 0.05 level(two-sided test);Double asterisk indicates significant correlation at 0.01 level(two-sided test). 表 4 不同种类碳源利用能力与重金属元素及土壤理化性质之间的相关性 Table 4 Correlation of carbon source utilization capacity with soil physical and chemical properties and heavy metal elements relative to type of the carbon source 3 讨论 3.1 不同地质高背景土壤的基本理化性质差异与母质和质地有关

马岭土壤有机质含量显著高于其他土壤(表 1),这可能与马岭土壤成土母质组分主要为氧化钙含量较高的石灰岩有关,研究发现,胡敏酸易与钙结合形成不易分解的胡敏酸钙,在同种生态系统下氧化钙含量高的石灰岩土壤有机碳更加容易积累[26]。四个土壤pH差异很大:母质同为河流沉积物的苏圩与云表土壤呈弱酸性,母质为石灰岩的马岭土壤则呈弱碱性。研究表明,土壤pH一般取决于成土母质,碱性基岩上发育的土壤pH一般要高于酸性基岩形成的土壤pH[27]。马岭土壤全量氮、磷含量显著较高,而速效钾含量显著低于其他地区,这与土壤质地有关,马岭土壤质地疏松,质地疏松的土壤保肥能力较低[28]。

注:TPb、TCd、TCu、TZn、TAs和APb、ACd、ACu、AZn、AAs分别表示:全量铅、全量镉、全量铜、全量锌、全量砷和有效铅、有效镉、有效铜、有效锌、有效砷。下同。  Note:TPb,TCd,TCu,TZn,TA,APb,ACd,ACu,AZn and AAs stands for total Pb,total Cd,total Cu,total Zn,total As,available Pb,available Cd,available Cu,available Zn and available As. The same below. 图 4 不同地质高背景土壤微生物碳代谢功能多样性及环境因子的冗余分析 Fig. 4 Diversity of the carbon metabolism function of the soil microbes in the soil high in geological background value and redundant analysis(RDA)of the environmental factors relative to sampling point 3.2 不同地质高背景土壤的重金属含量与赋存形态差异

对比2018年新出台的土壤环境质量农用地土壤污染风险管控标准(GB15618-2018)[29],四种土壤As元素总量均超过土壤风险筛选值(苏圩土壤(4.95倍)、锣圩(5.77倍)、马岭(4.45倍)、云表(4.35倍)),其中锣圩土壤超过风险管控值。Cd元素全量在苏圩(1.33倍)、马岭(2.25倍)土壤含量较高,超过国家土壤风险筛选值。其他重金属元素未超标。

不同土壤重金属富集情况不同,碳酸盐系石灰岩发育而来的马岭土壤Cd元素含量高于第四纪河流沉积物发育而来的苏圩、锣圩、云表土壤,这与郑国东[30]研究结果一致:几种土壤重金属含量由高到低依次为碳酸盐岩形成的土壤(灰岩、白云岩)、第四系沉积、碎屑岩形成的土壤(砂岩、砾岩、页岩)、中酸性岩形成的土壤。这种重金属含量的差别可能与土壤成土母质及风化程度等有关,首先马岭土壤成土母质本身重金属含量偏高,其次,与苏圩、锣圩、云表等土壤相比,马岭土壤地层形成时间更早,成土母质所受到的风化淋溶程度就更深,次生富集作用也就越大,进而土壤重金属富集含量越高。

不同土壤重金属有效态含量表现出与全量重金属不同的趋势(表 2),马岭地区土壤Cd全量((1.35±0.07)mg·kg–1)显著高于苏圩地区Cd含量((0.53±0.02)mg·kg–1),然而其有效镉含量差异却不显著,这可能是与两地的土壤pH及有机质含量有关。马岭地区土壤pH(7.77±0.04)以及有机质含量((76.77±3.70)g·kg–1)较高,而苏圩地区土壤pH(5.83±0.03)以及有机质含量((28.81±1.38)g·kg–1)较低。根据以往的研究,土壤有机质、pH是影响土壤重金属有效性的主要因素。一般地,土壤pH越低土壤中重金属阳离子活性越强,重金属元素的迁移性更强,其有效性增加[31]。土壤有机质等大分子固相有机物等会吸附重金属元素,限制其在土壤中的迁移能力,从而减弱重金属元素的有效性[32]。此外,土壤质地的不同也可能是其原因之一,本研究发现马岭地区土壤质地疏松且富含大量铁锰结核,土壤铁锰结核中锰氧化物对重金属离子有很强的吸附作用[33],这也将会导致土壤有效态重金属含量降低。

3.3 不同地质高背景土壤微生物群落变化的影响因素

土壤对微生物碳源利用能力及土壤微生物群落多样性受到土壤性质的显著影响(图 2、表 3)。本研究结果表明土壤重金属含量较高的马岭土壤,微生物对碳源的利用能力及微生物多样性指数高于重金属含量低的苏圩土壤,究其原因,可能与马岭土壤pH和有机质含量较高,土壤中重金属的生物有效性较低有关(表 2);此外,马岭土壤养分含量较高(表 1),给土壤微生物生存提供有利条件,土壤微生物数量、活性和微生物群落多样性增加[34-35]。

分析不同土壤对碳源的利用类型得到锣圩、马岭土壤微生物对胺类利用能力均较强,而苏圩土壤微生物利用能力最差。相关性分析发现Cu、Pb、Zn、As对土壤微生物利用胺类的能力呈负相关(表 4),因而重金属超标可能是苏圩土壤微生物对胺类利用能力低的主要原因。此外,苏圩土壤微生物对其他5种碳源的利用能力也显著低于其他土壤。这与赵立君等[16]的研究一致,受Pb、As等重金属污染土壤的微生物多样性会呈下降趋势,群落结构趋于简单,而且Pb、As污染会显著抑制氨基酸类、酯类、胺类的代谢活性。此外,有研究表明:增加土壤有机质可显著提高对糖类、羧酸类、胺类碳源的利用[36],表 4有机质含量与微生物对糖类、羧酸类与胺类等利用能力的正相关也印证了这一点。

4 结论

成土母质组分和地质年代会影响土壤有机质含量、pH、质地。地质高背景土壤重金属含量差异主要源于成土母质的不同,次生富集程度将随着土壤形成时间的增加而加强。养分含量低且重金属含量较高的苏圩土壤微生物对碳源的利用能力及多样性指数最低。土壤微生物对不同类型碳源利用强度在不同地质高背景土壤上差异显著,这主要体现在对胺类、糖类与氨基酸类的利用上,土壤有机质、pH、全量砷、镉、铅以及有效砷含量是引起土壤微生物碳源利用分异的主要环境因子。

致谢 感谢广西壮族自治区地质矿产勘查开发局王磊工程师及南京大学季峻峰老师对于地质背景信息的提供。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3