涡轴/涡桨发动机压气机流动特点与发展趋势

您所在的位置:网站首页 台湾发动机技术现状 涡轴/涡桨发动机压气机流动特点与发展趋势

涡轴/涡桨发动机压气机流动特点与发展趋势

2024-07-10 09:24| 来源: 网络整理| 查看: 265

[1] 张彦重. 中国直升机运输机的未来发展[J]. 中国工程科学, 2002, 4(8): 1-7. ZHANG Y Z. Developmental trend of helicopter and military transport in the future[J]. Engineering Sciences, 2002, 4(8): 1-7 (in Chinese). [2] 王适存. 面向21世纪的直升机发展[J]. 南京航空航天大学学报, 1997, 29(6): 601-606. WANG S C. Developmental trend of helicopter in 21st century[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1997, 29(6): 601-606 (in Chinese). [3] 侯树荣, 董彦斌, 刘圣宇, 等. 军用运输机在现代战争中的作用及发展趋势[J].吉林工程技术师范学院学报, 2010, 26(4): 69-71. HOU S R, DONG Y B, LIU S Y, et al. Function and developmental trend of military transport in modern war[J]. Journal of Jilin Teachers Institute of Engineering and Technology, 2010, 26(4): 69-71 (in Chinese). [4] 周新新, 陈玉春, 樊巍, 等. 涡轴发动机技术参数与发展趋势评估[J]. 航空工程进展, 2013, 4(2): 150-157. ZHOU X X, CHEN Y C, FAN W, et al. Evaluation of technical parameters and developing trends for turboshaft engines[J]. Advances in Aeronautical Science and Engineering, 2013, 4(2): 150-157 (in Chinese). [5] 钱笃元, 周拜豪. 航空发动机设计手册: 第八册[M]. 北京: 航空工业出版社, 2000. QIAN D Y, ZHOU B H. Aero engine design handbook: The eighth volume[M]. Beijing: Aviation Industry Press, 2000 (in Chinese). [6] 周盛. 叶轮机械新一代流型探索[R]. 国家自然科学基金重大项目建议书, 1992. ZHOU S. New generation of flow pattern in turbomachinery[R]. Major Program of the National Natural Science Foundation of China, 1992 (in Chinese). [7] JEFF L H, ROBERT A D. Advanced small turboshaft compressor (ASTC) performance and range investigation[R]. Indianapolis: Allison Engine Company, 1997. [8] 李湘君, 楚武利. 高负荷跨声速轴流压气机的叶型优化设计[J]. 计算机仿真, 2012, 29(7): 75-79. LI X J, CHU W L. Optimization design for high-loading transonic axial compressor blade profile[J]. Computer Simulation, 2012, 29(7): 75-79 (in Chinese). [9] WU Y H, CHU W L. Behavior of tip leakage in an axial flow compressor rotor: GT2006-90399[R]. New York: ASME, 2006. [10] DOMENICO B, FRANCO R. Prediction of tip-leakage flow in axial flow compressor with second moment closure: GT2006-90535[R]. New York: ASME, 2006. [11] ZHANG H H, DENG X Y. A study on the mechanism of tip leakage flow unsteadiness in an isolated compressor rotor: GT2006-91123[R]. New York: ASME, 2006. [12] 陈璇, 吴仕钰. 级环境下高负荷跨声压气机优化设计[J]. 南华动力学报, 2016(1): 32-37. CHEN X, WU S Y. Optimization design for high-loading transonic compressor under stage environment[J]. Journal of Nanhua Power, 2016(1): 32-37 (in Chinese). [13] 徐国华, 张锦纶. 某组合压气机改进设计[J]. 南华动力学报, 2016(3): 14-18. XU G H, ZHANG J L. Optimization design for a combined compressor[J]. Journal of Nanhua Power, 2016(3): 14-18 (in Chinese). [14] CUMPSTY N A. Compressor aerodynamics[M]. Malabar: Krieger Publishing Company, 2004. [15] WANG Z C, LAI S K. Aerodynamic calculation of turbine stator cascade with curvilinear leaned blades and some experimental results: IAA Paper No.A81-29072[R]. 1981. [16] 张华良. 采用叶片弯/掠及附面层抽吸控制扩压叶栅内涡结构的研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. ZHANG H L. Investigation on application of dihedral/swept blade and boundary layer suction to control vortex configuration in compressor cascades[D]. Harbin: Harbin Institute of Technology, 2006 (in Chinese). [17] LI L T. Effect of vortex generator jet on flow separations in bowed compressor cascades: GT2015-42308[R]. New York: ASME, 2015. [18] TAKAHASHI Y, HAMATAKE H,KATOH Y, et al. Experimental and numerical investigations of endwall flow in a bowed compressor cascade: AIAA-2005-3638[R]. Reston, VA: AIAA, 2005. [19] YANG C W, LU X G. Numerical investigation of a camtilevered compressor stator at varting clearance sizes: GT2015-42124[R]. New York: ASME, 2015. [20] 王立志, 阳诚武. 级负荷系数0.42的小流量轴流压气机设计与试验验证[J]. 航空发动机, 2016, 42(3): 54-60. WANG L Z, YANG C W. Design and measurements for a small flow rate axial compressor with stage work coefficient of 0.42[J]. Aeroengine, 2016, 42(3): 54-60 (in Chinese). [21] WEHLE P, WENGER U. Development of the rolls-royce 10 stage high pressure compressor family: ISABE 2009-1300[R]. 2009. [22] KLINGER H, LAZIK W, ROLLS-ROYCE T W. The engine 3E core engine: GT2008-50679[R]. New York: ASME, 2008. [23] HIROTAKA H. Detailed flow study of mach number 1.6 high tarnsonic flow in a pressure ratio 11 centrifugal compressor impeller: GT2007-27694[R]. New York: ASME, 2007. [24] 孙志刚, 胡良军. Eckardt叶轮二次流与射流尾迹结构研究[J]. 工程热物理学报, 2011, 32(12): 2017-2021. SUN Z G, HU L J. Investigation on the secondary flow structures and jet-wake structure of the Eckardt’s impeller[J]. Journal of Engineering Thermophysics, 2011, 32(12): 2017-2021 (in Chinese). [25] MICHELE M, FILIPPO R. Numerical analysis of the vaned diffuser of a transonic centrifugal compressor: GT2007-272009[R]. New York: ASME, 2007. [26] SEⅡCHI L. Investigation of unsteady flow in vaned diffuser of a transonic centrifugal compressor: GT2006-902689[R]. New York: ASME, 2006. [27] BENNETT I, TOURLIDAKIS A, ELDER R L. The design and analysis of pipe diffusers for centrifugal compressor[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2000, 214(1): 87-96. [28] 王毅, 赵胜丰. 高负荷离心压气机管式扩压器特点及机理分析[J]. 航空动力学报, 2011, 26(3): 649-655. WANG Y, ZHAO S F. Analysis of characteristic and mechanism of pipe diffuser for a highly loaded centrifugal compressor[J]. Journal of Aerospace Power, 2011, 26(3): 649-655 (in Chinese). [29] KUNTE R, SCHWARZ P, WILKOSZ B, et al. Experimental and numerical investigation of tip clearance and bleed effects in a centrifugal compressor stage with pipe diffuser[C]//ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2011. [30] 谢芳, 楚武利. 跨声轴流压气机激波/泄漏涡/边界层分离相互作用的影响[J]. 航空动力学报, 2012, 27(2): 425-430. XIE F, CHU W L. Influence of blade tip clearance at near-stall condition on transonic axial-flow compressor[J]. Journal of Aerospace Power, 2012, 27(2): 425-430 (in Chinese). [31] 张晨凯, 胡骏. 轴流压气机转子叶尖间隙流动结构的数值研究[J]. 航空学报, 2014, 35(5): 1236-1245. ZHANG C K, HU J. Numerical study of tip clearance flow structure of an axial flow compressor rotor[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1236-1245 (in Chinese). [32] 赵伟光, 朱玲. 处理机匣对某跨声压气机气动性能影响的数值研究[J]. 南华动力学报, 2014(5): 9-13. ZHAO W G, ZHU L. Numerical smulation of casing treatment effect at tronsonic compressor[J]. Journal of Nanhua Power, 2014(5): 9-13 (in Chinese). [33] HIDEAKI T. Effect of recirculation device on performance of high pressure ratio centrifugal compressor: GT2010-22570[R]. New York: ASME, 2010. [34] 卜远远, 楚武利, 张皓光, 等. 高压比离心叶轮自循环机匣处理扩稳研究[J]. 推进技术, 2013, 34(2): 194-201. BU Y Y, CHU W L, ZHANG H G, et al. Stability improvement in high pressure-ratio centrifugal impeller with self recirculation casing treatment[J]. Journal of Propulsion Technology, 2013, 34(2): 194-201 (in Chinese). [35] 康剑雄, 黄国平, 温殿忠. 离心压气机自循环机匣处理扩稳机理分析[J]. 航空学报, 2014, 35(12): 3264-3272. KANG J X, HUANG G P, WEN D Z. Mechanism analysis of stability enhancement by self-recirculating casing treatment for centrifugal compressor[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3264-3272 (in Chinese). [36] 曹四. 机匣处理对跨声速离心压气机性能影响[J]. 南华动力学报, 2016(2): 56-61. CAO S. Influence of casing treatment at tronsonic centrifugal compressor[J]. Journal of Nanhua Power, 2016(2): 56-61 (in Chinese).



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3