线性代数|矩阵可交换的定义和性质

您所在的位置:网站首页 单位矩阵都是对角阵怎么办 线性代数|矩阵可交换的定义和性质

线性代数|矩阵可交换的定义和性质

2024-07-12 02:17| 来源: 网络整理| 查看: 265

证明 不妨设 φ ( A ) \varphi(\boldsymbol{A}) φ(A) 是矩阵 A \boldsymbol{A} A 的 m 1 m_1 m1​ 次多项式, f ( A ) f(\boldsymbol{A}) f(A) 是矩阵 A \boldsymbol{A} A 的 m 2 m_2 m2​ 次多项式,令 m = max ⁡ ( m 1 , m 2 ) m = \max(m_1,m_2) m=max(m1​,m2​),于是 φ ( A ) \varphi(\boldsymbol{A}) φ(A) 和 f ( A ) f(\boldsymbol{A}) f(A) 可以表示为 φ ( A ) = a 0 E + a 1 A + ⋯ a m A m f ( A ) = b 0 E + b 1 A + ⋯ b m A m \begin{align*} \varphi(\boldsymbol{A}) = a_0 \boldsymbol{E} + a_1 \boldsymbol{A} + \cdots a_m \boldsymbol{A}^m \\ f(\boldsymbol{A}) = b_0 \boldsymbol{E} + b_1 \boldsymbol{A} + \cdots b_m \boldsymbol{A}^m \\ \end{align*} φ(A)=a0​E+a1​A+⋯am​Amf(A)=b0​E+b1​A+⋯bm​Am​ 于是根据矩阵乘法的分配律,有 φ ( A ) f ( A ) = ( a 0 E + a 1 A + ⋯ a m A m ) ( b 0 E + b 1 A + ⋯ b m A m ) = ( a 0 E ⋅ b 0 E + a 0 E ⋅ b 1 A + ⋯ + a 0 E ⋅ b m A m ) + ( a 1 A ⋅ b 0 E + a 1 A ⋅ b 1 A + ⋯ + a 1 A ⋅ b m A m ) + ⋯ + ( a m A m ⋅ b 0 E + a m A m ⋅ b 1 A + ⋯ + a m A m ⋅ b m A m ) (1) \begin{align*} \varphi(\boldsymbol{A}) f(\boldsymbol{A}) = & (a_0 \boldsymbol{E} + a_1 \boldsymbol{A} + \cdots a_m \boldsymbol{A}^m) (b_0 \boldsymbol{E} + b_1 \boldsymbol{A} + \cdots b_m \boldsymbol{A}^m) \\ = & (a_0 \boldsymbol{E} \cdot b_0 \boldsymbol{E} + a_0 \boldsymbol{E} \cdot b_1 \boldsymbol{A} + \cdots + a_0 \boldsymbol{E} \cdot b_m \boldsymbol{A}^m) \\ & + (a_1 \boldsymbol{A} \cdot b_0 \boldsymbol{E} + a_1 \boldsymbol{A} \cdot b_1 \boldsymbol{A} + \cdots + a_1 \boldsymbol{A} \cdot b_m \boldsymbol{A}^m) \\ & + \cdots \\ & + (a_m \boldsymbol{A}^m \cdot b_0 \boldsymbol{E} + a_m \boldsymbol{A}^m \cdot b_1 \boldsymbol{A} + \cdots + a_m \boldsymbol{A}^m \cdot b_m \boldsymbol{A}^m) \end{align*} \tag{1} φ(A)f(A)==​(a0​E+a1​A+⋯am​Am)(b0​E+b1​A+⋯bm​Am)(a0​E⋅b0​E+a0​E⋅b1​A+⋯+a0​E⋅bm​Am)+(a1​A⋅b0​E+a1​A⋅b1​A+⋯+a1​A⋅bm​Am)+⋯+(am​Am⋅b0​E+am​Am⋅b1​A+⋯+am​Am⋅bm​Am)​(1) 因为定理 2,所以上式 ( 1 ) (1) (1) 中所有包含 E \boldsymbol{E} E 的项,满足 a i E ⋅ b j A k = b j A k ⋅ a i E a i A k ⋅ b j E = b j E ⋅ a i A k (2) \begin{align*} a_i \boldsymbol{E} \cdot b_j \boldsymbol{A}^k = b_j \boldsymbol{A}^k \cdot a_i \boldsymbol{E} \\ a_i \boldsymbol{A}^k \cdot b_j \boldsymbol{E} = b_j \boldsymbol{E} \cdot a_i \boldsymbol{A}^k \\ \end{align*} \tag{2} ai​E⋅bj​Ak=bj​Ak⋅ai​Eai​Ak⋅bj​E=bj​E⋅ai​Ak​(2) 因为引理 1 和矩阵乘法的结合律,所以上式 ( 1 ) (1) (1) 中所有只包含 A \boldsymbol{A} A 的幂的项,满足 a i A k ⋅ b j A l = b j A l ⋅ a i A k (3) a_i \boldsymbol{A}^k \cdot b_j \boldsymbol{A}^l = b_j \boldsymbol{A}^l \cdot a_i \boldsymbol{A}^k \tag{3} ai​Ak⋅bj​Al=bj​Al⋅ai​Ak(3) 将式 ( 2 ) (2) (2) 和 ( 3 ) (3) (3) 代入式 ( 1 ) (1) (1),则有 φ ( A ) f ( A ) = f ( A ) φ ( A ) \varphi(\boldsymbol{A}) f(\boldsymbol{A}) = f(\boldsymbol{A}) \varphi(\boldsymbol{A}) φ(A)f(A)=f(A)φ(A) 得证。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3