低共熔溶剂在生物转化中的应用

您所在的位置:网站首页 刚转译出来的完整胰凝乳蛋白酶为什么催化活性很低 低共熔溶剂在生物转化中的应用

低共熔溶剂在生物转化中的应用

2024-07-16 21:22| 来源: 网络整理| 查看: 265

0 引言

绿色化学的宗旨之一是减少生化工艺过程中产生的环境毒性, 传统的有机溶剂不可避免存在着高挥发性、易燃性、不可回收以及对生物催化反应的抑制作用[1]。因此, 寻找安全环保的替代溶剂受到了越来越多的关注[2]。离子液体因其蒸汽压低没有挥发性而被作为传统溶剂的替代溶剂[3], 但由于离子液体价格昂贵、合成复杂、对环境污染性大以及许多成分(例如四烷基铵和二烷基咪唑)的生物降解性差[4], 不利于社会的可持续性发展。

近年来, 类离子液体— — 低共熔溶剂(deep eutectic solvent, DES), 因其具有与离子液体相近的特性, 包括蒸气压低、生物降解性好、合成简单、理化性质可调等优点, 被广泛应用于生物、化学等各种领域[5]。DES是由氢键供体(hydrogen bond donor, HBD)和氢键受体(hydrogen bond receptor, HBA)以一定摩尔比混合加热形成的均相透明溶液。研究发现, DES与许多生物材料(如核酸、酶和药物)具有生物相容性, 且在有机催化、生物转化和分子提取方面均发现有促进作用[6, 7, 8, 9]。针对以上特点, 本文简述了DES的生物毒性和生物降解性, 重点综述了DES在生物催化与转化方面的应用与作用机制, 并对其在生物转化领域的工作进行了展望。

1 DES的生物学特性1.1 细胞毒性

DES由两种或两种以上物质组成, 且大多数是由环境友好的天然成分构成(例如胆碱, 是B族维生素中的一员)。因此, DES一般被认为是无毒的、具有生物相容性的绿色溶剂, 但在参与一些微生物生化转化反应时, DES的细胞毒性往往是不可忽略的, 表1列举了近年来报道的DES的生物毒性研究情况。

表1Table 1表1(Table 1) 表1 不同DES对微生物细胞生长繁殖的影响 Table 1 The effect of different DES on the growth and reproduction of microbial cellsDES实验方法微生物抑制作用甘油/ChCl乙二醇/ChCl三甘醇/ChCl尿素/ChCl-Escherichia coliBacillus subtilisStaphylococcus aureusPseudomonas aeruginosa对4种微生物的生长均无抑制作用[10]氯化乙酰胆碱/乙酰胺 (1:2)测定微生物 生长曲线E. coliDES浓度在300 mmol/L以下时无抑制, 300 ~ 450 mmol/L时可耐受, 大于600 mmol/L时生长完全被抑制[14]尿素/乙酰胆碱(1:1) 乙酰胺/乙酰胆碱甘油/乙酰胆碱乙二醇/乙酰胆碱观察生长情况 测定抑菌指数E. coli乙二醇/乙酰胆碱 < 尿素/乙酰胆碱 < 乙酰胺/乙酰胆碱 < 甘油/乙酰胆碱[11]柠檬酸/蔗糖(1:1) 苹果酸/果糖/葡萄糖(1:1:1)测定微生物的 存活率E. coliS. epidermidisP. aeruginosaKlebsiella pneumoniae浓度小于0.5%的DES仍然有抗菌作用, 与等摩尔浓度的柠檬酸相比, 对 K. pneumoniae和E. coli的毒性更小 (p< 0.05)[15] 表1 不同DES对微生物细胞生长繁殖的影响 Table 1 The effect of different DES on the growth and reproduction of microbial cells

2013年HAYYAN等[10]提出DES是否具有毒性的问题, 并研究了以氯化胆碱(choline chloride, ChCl)为氢键受体, 甘油、乙二醇、三甘醇和尿素为氢键供体的四种DES分别对金黄色葡萄球菌(S. aureus)、枯草芽孢杆菌(B. subtilis)、大肠杆菌(E. coli)、铜绿假单胞菌(P. aeruginosa)以及卤虫藻(Artemia salina)有无毒性作用进行研究。实验结果表明, 四种ChCl型DES对所研究的细菌均无毒性, 而仅对卤虫藻有一定毒性且毒性因DES的氢键影响了化合物的结构而远高于其单个成分。WEN等[11]在2015年的相关实验中, 发现DES的这种抑制作用与细菌细胞壁结构有关。此外, 有文献报道一些含有有机酸的DES(如ChCl/柠檬酸)比氨基、醇基和糖基的DES对细菌的抑制作用更强[12]。RADOŠ EVIĆ 等[13]研究了三种ChCl类DES对鱼及人细胞系细胞内的毒性作用, 发现ChCl/甘油具有较低的细胞毒性(对两种细胞均为EC50> 10 mmol/L), 而ChCl/草酸则表现出中度的细胞毒性。

综上所述, DES的组成影响着溶剂的性质和溶剂的利用领域, 因此, 可根据DES组成成分的物理化学特性合成具有特殊性质的新型DES溶剂。研究表明, 一些DES在一定程度上存在细胞毒性, 但是由于所测试的生物体与在生物催化过程中使用的有所不同, 这些研究具有一定的局限性, 然而, 对于一个典型的反应, 可以在前人研究的指导下估算所使用的DES对反应中生物催化剂的影响[1]。因此, 研究者可以在前人基础上更加充分地了解以及利用DES的特性, 对其参与的微生物转化以及生物催化反应进行优化。

1.2 DES的生物降解性

被称为“ 绿色溶剂” 的 DES, 大多数都是可生物降解的。目前, 关于DES生物可降解性的数据较少, 确定其生物降解潜力是非常必要的。RADOŠ EVIĆ 等[13]采用密闭瓶法测试了以葡萄糖(glucose, Glu)、甘油(glycerin, Gly)和草酸(oxalic acid, OA)为氢键供体的三种ChCl类DES的生物降解性。实验表明生物降解程度为ChCl/Glu > ChCl/Gly > ChCl/OA, 其中ChCl/Glu的生物降解率最高, 为96%; ChCl/OA最低, 为68%。

通常生物可降解化合物首先以各种方式通过细胞壁, 如自由扩散、易化扩散或主动转运, 然后通过酶的氧化作用, 中间产物被代谢成水和二氧化碳或转化为细胞的组成物质, 这是氨基DES和糖基DES具有良好生物降解性的主要原因, 其次, 细菌细胞膜上也含有胆碱盐阴离子运输的专属载体。此外, DES的羟基、羧基和氨基是酶催化反应的潜在位点, 也可能会提高其生物降解能力[12]。但是一些具有短烷基侧链的DES拥有较差的生物降解性[16]。

2 DES在酶催化反应中的应用

酶催化反应通常在条件较为温和的水溶液中进行, 一般不需要常规化学有机合成中所需的官能团活化和保护以及去保护的步骤, 使得产物的合成时间更短, 选择性更高, 能提供更高纯度的产品, 在能源和原材料制备方面更有效, 比传统方法产生的废物更少[17]。但如果有机底物仅微溶于水, 不利于酶催化反应的进行, 则有必要开发新的酶催化反应介质, 使得非水相酶催化反应成为可能。目前许多DES被用于代替离子液体作为酶催化反应的溶剂。与离子液体相比, DES更有利于环境保护以及节约经济成本。在生物催化方面, 已经报道了几种以DES为溶剂的酶催化过程, 例如脂肪酶催化(反式)酯化和氨解反应[18, 19]。

除了作为酶催化反应的溶剂外, DES也可以作为酶的激活剂, 例如LEHMANN等[20]利用DES作为水溶液中的助溶剂来评估纤维素酶的活性和稳定性。有研究发现DES中不同的氢键供体与氢键受体组成以及其摩尔比均会影响酶活性, 通过选择具有最佳化学性质的DES, 酶可以高度稳定并被激活, 例如HUANG等[7]的研究证明了醋酸胆碱/甘油(1:2)可以作为稳定剂而显著提高脂肪酶的活性。表2列出了不同DES在一些酶催化中的应用。

表2Table 2表2(Table 2) 表2 DES在各种酶生物催化作用中的应用 Table 2 Application of DES in the biocatalysis of various enzymes酶类型DES组成功能参考文献脂肪酶TLIMNovozym 435乙酰胆碱/乙酰胺乙酰胆碱/葡萄糖 乙酰胆碱/乙二醇乙酰胆碱/尿素ChCl/尿素ChCl/葡萄糖作为甲基糖苷与脂肪酸酯化反应生产葡萄糖基脂肪酸酯的溶剂[21]纤维素酶ChCl/甘油(1:2) ChCl/乙二醇(1:2)纤维素酶在此体系下能保留90%以上的原活性[22]胰凝乳蛋白酶ChCl/甘油作为胰凝乳蛋白酶催化肽合成的反应介质[23]辣根过氧化物酶(HRP)ChCl或乙酰胆碱/乙酰胺ChCl或乙酰胆碱/尿素 ChCl或乙酰胆碱/乙二醇ChCl或乙酰胆碱/甘油当盐/氢键供体摩尔比依次为1:2 < 1:1 < 2:1时, HRP活性增加[24]绿豆环氧化物酶ChCl/三聚乙二醇在绿豆环氧化物酶水解环氧苯乙烯不对称反应中添加10%的量, 能够提高产物对映体纯度, 但产物产量下降[25]南极假丝酵母脂肪酶B(CALB)ChCl/甘油甜菜碱/甘油ChCl/木糖醇甜菜碱/木糖醇ChCl/甘油、甜菜碱/甘油可提高CALB的稳定性; ChCl/木糖醇、甜菜碱/木糖醇可降低CALB的稳定性[26]Novozym 435ChCl/甘油(1:2)在大豆油为底物的酶法制备生物柴油反应中达到在24 h内实现88%的甘油三酯转化率的成果[27]乙醇脱氢酶(ADH)ChCl/甘油在乙醇脱氢酶(ADH)催化的不同酮类立体选择性还原反应中, 降低了酶将底物转化为相应的醇的能力, 提高了酶的立体选择性[28] 表2 DES在各种酶生物催化作用中的应用 Table 2 Application of DES in the biocatalysis of various enzymes2.1 脂肪酶

脂肪酶(甘油三酯脂肪酶)是能够催化水解油脂生成游离脂肪酸、甘油二酯、单甘酯和甘油的一类酶[29]。脂肪酶在工业生产中有广泛的应用, 例如生物柴油的制备, 表面活性剂的合成[30, 31]。大多数脂肪酶在有机溶剂中能够保持良好的活性。ZHAO等[12]研究发现廉价、无毒的甘油/ChCl与脂肪酶有良好的生物相容性, 可以作为大豆油制备柴油的酶促反应介质, 并使产物转化率达到了88%, 而且反应结束后回收的诺维信435脂肪酶仍可继续使用至少4次。因此, 这种新型DES可以很好地替代传统有毒易挥发的有机溶剂。此外, 研究表明脂肪酶在DES中的活性取决于酶和底物的类型。ELGHARBAWY等[32]揭示了DES在脂肪酶催化的水解反应中作为助溶剂和主溶剂的潜在作用。他们利用ChCl与甘油和丙二酸以及糖(葡萄糖、果糖和蔗糖)等组合, 试验了6种不同脂肪酶, 包括猪胰腺脂肪酶、玫瑰假丝酵母脂肪酶、洋葱伯克霍尔德氏菌脂肪酶、尼氏根霉脂肪酶、丙烯酸树脂南极假丝酵母脂肪酶、固定珠150上的南极假丝酵母脂肪酶B(Candida antarcticlipase B, CALB), 对对硝基苯棕榈酸酯的水解作用。结果表明, 由ChCl/蔗糖制备的DES效果最好, 可使CALB和猪胰腺脂肪酶的活性分别提高到355%和345%; 并且, 动力学研究证实脂肪酶在含有40%的DES中具有更高的催化效率(kcat/Km)。以上研究说明天然的DES可以作为脂肪酶催化反应的溶剂来取代水反应体系。

在ChCl或氯化乙胺与酰胺、羟基或酸等氢键供体配对的DES中, 固定化的CALB具有较强活性[17]。然而, 部分DES也会限制脂肪酶的活性。在DURAND等[18]的研究中, 利用固定化的CALB为催化剂, 进行月桂酸乙烯酯的酯交换反应, 使用不同链长的醇评估DES对底物极性的影响, 结果发现, DES(ChCl/丙二酸、ChCl/乙二酸、ChCl/乙二醇)的组分在醇解过程中与底物发生竞争反应, 而且发现基于二羧酸或乙二醇的DES出现了副反应, 导致这些DES的使用受到一些限制。尽管如此, 在大多数情况下, DES组分之间的氢键可以显著降低其反应活性。此外, ChCl/尿素和ChCl/甘油等DES具有较高的活性和选择性, 是脂肪酶催化反应的理想溶剂, 相对于传统有机溶剂, 在DES中固定化CALB受醇链长度的影响较小, 对蛋白质结构的破坏最小。

2.2 纤维素酶

木质纤维素作为一种常见生物质主要是由复杂的碳水化合物组成, 可转化为糖而用于生产生物燃料[33]。DES是最近出现的新一代用于木质纤维素预处理的类离子液体。然而, DES含有的盐成分在后续的糖化过程中会使纤维素酶失活, 从而降低整个系统的应用性。因此, 有必要评估DES-纤维素酶系统的适用性以改善这一问题。GUNNY等[22]研究了纤维素酶在特定DES存在下的稳定性, 进行了葡萄糖生产、能量消耗和动力学性能的适用性评估。研究发现, 在体积分数为10%的甘油基DES和乙二醇基DES存在下, 纤维素酶能够保留90%以上的活性。而在5%的丙二酸基DES中, 酶活性仅剩原有的38%, 浓度为10%时无酶活性, 这可能是因为丙二酸作为阳离子与酶相互作用, 导致构象变化和酶的失活。此外, 与稀碱预处理体系相比, 两种DES体系均表现出较高的葡萄糖转化率和较低的能耗, 且乙二醇基DES有较好的动力学性能。GUNNY等[33]也阐明了DES对生物质消化的稳定性和协同作用, 发现30℃时, 工业纤维素酶在体积分数为10%的DES中作用1 h后, 其相对活性保持在90%以上, 且预处理温度越高, 米糠制取单糖的效率越高。

2.3 其他类型酶

除了脂肪酶与纤维素酶两种常用的酶, DES也会对一些其他酶的酶促反应产生影响。例如胰凝乳蛋白酶, 在ChCl/甘油混合物中对肽的合成具有很高的活性[23]。ChCl型DES经生物催化有望成为合成多肽的新溶剂。DES对绿豆环氧化物酶水解环氧苯乙烯的不对称反应也有影响[25], 添加10%的ChCl/三聚乙二醇可以使产物的对映体(R-苯基乙二醇)纯度从 (83.2 ± 1.3)% 提高到 (87.9 ± 0.3)%。当DES添加量从10%增加到30%, 对映体纯度从87.9%增加到94%, 但是产物的产量呈下降趋势, 且10% ~ 30%的添加量不利于酶活性的恢复。

3 在DES中的微生物转化3.1 酵母菌

在一些微生物参与的生物转化反应中, 添加DES的双水相溶剂比单纯水溶剂有更好的效果。当底物在水中的溶解度过低时, 需要在有机溶剂中进行。这种利用微生物全细胞进行的生物催化与直接使用分离酶相比, 细胞为酶提供了一个自然的环境, 允许辅因子再生, 并防止酶在严苛条件下(例如在非水相等非常规的反应介质中)发生变性和失活[34]。表3总结了一些DES在微生物转化中的应用情况。红酵母菌(Rhodotorula)属于真菌界[35], 通常能够还原低分子量酮(苯乙酮的衍生物)[36]以及酮酯[37]。BUBALO等[38]评价了胆碱类DES作为酵母菌将3-氧丁酸乙酯还原为3-羟基丁酸乙酯的反应溶剂, 发现此酿酒酵母菌与DES有良好的生物相容性, 此外, 氢键供体的类型和DES中的含水量对反应产率有较大影响, 当水的质量百分数为50%时, 糖和醇类DES是还原反应的最佳溶剂, 其产率与磷酸盐缓冲液相似(< 93.0%), 而在酸或酰胺类DES中, 无论水含量如何, 产率都很低(< 49.3%)。

表3Table 3表3(Table 3) 表3 DES在微生物转化中的应用 Table 3 Application of DES in microbial transformation应用对象研究内容结论文献节杆菌(Arthrobacter sp.)DESs各组分对细菌活力、膜完整性和代谢活性保留的协同作用, 以及利用节杆菌的整个细胞对醋酸可的松进行1, 2-脱氢生成的效率单独DES组分对节杆菌具有更大毒性, DES对生物催化有协同作用[39]红球菌(Rhodococcus sp.)DES组成和使用量对生物转化的立体选择性和有效性的影响底物α -乙酰基丁内酯的总反应性仅在10%以及25%的氯代甲烷/甘氨酸DES存在时发生[40]梭形赖氨酸芽孢杆菌(Lysinibacillus fusiformis CGMCC1347)24种DES及21种天然DES对细胞转化异丁香酚为香草醛的催化效率的影响两种溶剂对细胞催化效率分别达到纯水体系的142%、132%, 能够增强细胞膜的通透性[41]醋酸杆菌(Acetobactersp. CCTCC M209061)DESs改进醋酸杆菌全细胞催化3-氯丙酚不对称还原为(S)-(-)-3-氯-1-苯基-1-丙醇的工艺ChCl/尿素是该反应最合适的DES, 与Acetobacter sp. CCTCC M209061细胞的生物相容性最好, 提高细胞膜通透性与底物的浓度, 缩短了反应时间[42]醋酸杆菌(Acetobactersp. CCTCC M209061)DESs对醋酸杆菌催化外消旋1-(4-甲氧基苯基)乙醇不对称氧化的影响在含ChCl/甘油的体系中, 底物浓度显著增加, 而残留的底物保持在99.9%的水平[43] 表3 DES在微生物转化中的应用 Table 3 Application of DES in microbial transformation3.2 大肠杆菌

直接利用微生物进行生物催化反应能够避免酶的分离等一系列复杂程序, 但是由于全细胞细胞壁及细胞膜的存在, 底物和酶的接触并不充分, 并且生物转化产物无法快速流出, 容易造成底物抑制[44], 降低目标产物的收率。为了解决这一问题, 增强细胞内酶与底物之间的结合, ZHANG等[45]使用离子液体和DES处理了大肠杆菌BL21-pET21a-rhaB1细胞进行生物转化, 利用芦丁来生产异槲皮苷。研究发现, 6%的ChCl/尿素处理后的大肠杆菌催化活性最高, 且用此DES处理后细胞的稳定性更强, 这是由于处理后细胞的最佳pH接近中性且有耐高温性, 在最佳条件下, 异槲皮苷的收率最高可达 (93.05 ± 1.3)%。此研究表明, 利用ChCl/尿素处理大肠杆菌细胞可以提高细胞膜的通透性, 从而提高细胞的生物转化能力。

4 结论与展望

DES作为一种可生物降解溶剂, 在生物质酶的催化作用中可充当溶剂和助溶剂以及酶的激活剂, DES可以增强酶的稳定性, 也可以使一些非水相酶的酶活性保持及应用得以实现。DES在蛋白酶、脂肪酶、纤维素酶的生物质催化方面都有很好的协同作用。当DES应用于微生物的生物转化过程中, DES能够增强细胞膜的通透性, 加强底物与胞内酶的接触, 减少底物抑制, 缩短催化反应的时间, 提高产物的收率。DES在生物转化方面的应用为一些生物产品的回收提供了有效的途径。然而, 在DES对微生物活性的影响方面仍需做很多研究。例如在DES中所有使用脂肪酶的生物转化都是在与溶剂亲和力差的底物中进行的, 而在大多数情况下这种底物是惰性的, 因此下一步可能会进行在DES中对酶修饰的应用。另外, 在DES中进行反应的酶的固定化作用也需进一步探讨。其次, 在选择DES时, 要尽量避免一些有害离子, 而且一些酶的反应中可能会产生副产物, 导致反应体系黏度增大, 使得搅拌和回收变得困难, 这也是一项需要继续深入研究和解决的问题。



【本文地址】


今日新闻


推荐新闻


CopyRight 2018-2019 办公设备维修网 版权所有 豫ICP备15022753号-3